Для цитирования:
Кияшко С. В., Назаровский А. В. Динамика роликовых доменов и образование структур из частиц при параметрическом возбуждении капиллярных волн // Известия вузов. ПНД. 2016. Т. 24, вып. 4. С. 17-38. DOI: 10.18500/0869-6632-2016-24-4-17-38
Динамика роликовых доменов и образование структур из частиц при параметрическом возбуждении капиллярных волн
Представлен обзор результатов изучения динамики роликовых доменов параметрически возбуждаемых волн на поверхности жидкости. С позиции нелинейной динамики обсуждаются процессы установления регулярных волновых структур и структур из тяжелых частиц, образующихся под действием поля стоячих волн. В экспериментальных исследованиях получен ряд интересных результатов, касающихся динамики роликовых доменов и образование структур из частиц при параметрическом возбуждении капиллярных волн. Обнаружен эффект мультивариантности сценариев перехода к устойчивому состоянию равновесия. Обнаружено, что при включении внешнего сигнала наблюдаются различные сценарии в динамике конкурирующих доменов при неизменных параметрах системы. На поверхности жидкости большой вязкости при многоугольной форме границ обнаружен эффект мультистабильности, при которой возможно существование нескольких устойчивых роликовых режимов, отличающихся только ориентацией в пространстве. Обнаружено образование многозаходных спиральных структур из тяжелых частиц, помещенных в слой жидкости, на поверхности которого параметрически возбуждаются капиллярные волны. Известно, что процессы возникновения, взаимодействия, синхронизации и разрушения пространственных структур во многих системах имеют схожую динамику. Но в некоторых системах изучение этих процессов может быть сопряжено со значительными трудностями. В данном случае результаты получены при исследовании параметрически возбуждаемой капиллярной ряби, которая является весьма удобным объектом для исследования образования структур и перехода от регулярных структур к хаосу из-за своей простоты и вместе с тем большого разнообразия наблюдаемых эффектов. Описанные в обзоре результаты будут важны для понимания процессов происходящих в системах различной физической природы.
- Rabinovich M.I., Ezersky A.B., and Weidman P.D. The Dynamics of Patterns // World Scientific, Singapore, 2000.
- Захаров В.Е., Львов В.С., Мушер С.Л. О нестационарном поведении системы параметрически возбужденных спиновых волн // Физика твердого тела. 1972. No 4. С. 2913.
- Езерский А.Б., Рабинович М.И., Реутов В.П., Старобинец И.М. Пространственно-временной хаос в параметрически возбуждаемой капиллярной ряби // ЖЭТФ. 1986. 91. Вып. 6 (12). С. 2070.
- Ezersky A.B., Kiyashko S.V., Matusov P.A., Rabinovich M.I. Domain, domain walls and dislocations in capillary ripples // Europhys. Lett. 1994. Vol. 26, No 3. Pp. 183–188.
- Ezersky A.B., Nazarovsky A.V., Kiyashko S.V. Bound states of topological defects in parametrically excited capillary ripples // Physica D. 2001. Vol. 152–153. Pp. 310–324.
- Афенченко В.О., Кияшко С.В., Пискунова Л.В. Движение фронта при конкуренции роликовых доменов параметрически связанных волн // Изв. РАН Сер. Физ. 2004. Т. 68, No 12. С. 1771–1775.
- Кияшко С.В. Динамика роликовых доменов параметрически возбуждаемых капиллярных волн // Изв. вузов. Радиофизика. 2008. Т. LI, No 4. С. 359–365.
- Кияшко С.В., Афенченко В.О., Назаровский А.В. Динамика роликовых доменов параметрически возбуждаемых капиллярных волн при прямоугольной геометрии границ // Изв. вузов ПНД. 2013. Т. 21, No 6. C. 58–68.
- Kiyashko S.V., Afenchenko V.O., Nazarovskii A.V. Dynamics of Roll Domains in a Rounded-Corner Cell // Physics of Wave Phenomena. 2014. Vol. 22, No 2. Pp. 132–139.
- Kiyashko S.V., Korzinov L.N., Rabinovich M.I., Tsimring L.S. Rotating spirals in a Faraday experiment // Phys. Rev. E. 1996. Vol. 54, No 5. Pp. 5037–5040.
- Edwards W.S. and Fauve S. Patterns and quasi-patterns in the Faraday experiment // J. Fluid Mech. 1994. Vol. 278. Pp. 123–148.
- Кияшко С.В., Афенченко В.О., Назаровский А.В. Мультистабильность роликовых структур параметрически возбуждаемых капиллярных волн при многоугольной форме границ // Изв. вузов. Радиофизика. 2016. Т. 59, No 6. С. 489.
- Ottino J.M. The kinematics of mixing: stretching, chaos, and turbulence. Cambridge University press, Cambridge 1989.
- Gollub J.P. Nonlinear waves: Dynamics and transport // Physica D. 1991. Vol. 51. P. 501.
- Mesquita O.N., Kane S., Gollub J.P. Transport by capillary waves: Fluctuating Stokes drift // Phys. Rev. A. 1992. Vol. 45, No 6. P. 3700.
- Ramshankar R., Berlin D., Gollub J.P. Transport by capillary waves. Part I. Particle trajectories // Phys. Fluids A 2. 1990. P. 1955.
- Ramshankar R., Gollub J.P. Transport by Capillary Waves, Part II: Scalar Dispersion and the Structure of the Concentration field // Phys. Fluids A 3. 1991. P. 1344.
- Езерский А.Б., Кияшко С.В., Назаровский А.В. Перенос примеси топологическими дефектами поля параметрически возбуждаемой капиллярной ряби // Препринт No 506 ИПФРАН, 1999.
- Кияшко С.В., Афенченко В.О., Назаровский А.В. Спиральные структуры из тяжелых частиц при параметрическом возбуждении стоячих капиллярных волн// Изв. вузов ПНД. 2013. Т. 21, No 2. С. 201–208.
- Кияшко С.В., Назаровский А.В. Структуры при параметрическом возбуждении капиллярной ряби в слое с периодической неоднородностью глубины // Изв. РАН Сер. Физ. 2000. Т. 64, No 12. С. 2405–2411.
- Матусов П.А., Цимринг Л.Ш. Распространение фронта параметрически возбуждаемой капиллярной ряби // Препринт No225, Горький, ИПФ АН, 1988.
- Afenchenko V.O., Ezersky A.B., Kaverin B.S., Kiyashko S.V., and Chesnokov S.A. Production of materials with periodically arranged microparticles by photopolymerization of patterns formed at parametric excitation of capillary surface waves // Physics of Wave Phenomena. 2011. Vol. 19, No 1. Pp. 68–73.
- 1914 просмотров