Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


мультистабильность

Математическая модель трех конкурирующих популяций и мультистабильность периодических режимов

Цель настоящей работы – анализ колебательных режимов в системе нелинейных дифференциальных уравнений, описывающих конкуренцию трех неантагонистических видов на пространственно однородном ареале. Методы. С использованием теории косимметрии устанавливается связь между разрушением двухпараметрического семейства равновесий и возникновением непрерывного семейства периодических режимов. C помощью вычислительного эксперимента в MATLAB проведен поиск предельных циклов и анализ мультистабильности. Результаты.

О существовании мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора

Целью работы является исследование возможности существования мультистабильности вблизи границы обобщенной синхронизации в системах со сложной топологией аттрактора. В качестве объектов исследования выбраны однонаправленно связанные системы Лоренца, а для диагностики синхронного режима использован модифицированный метод вспомогательной системы. Результатом работы является доказательство наличия мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора.

О существовании мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора

Целью работы является исследование возможности существования мультистабильности вблизи границы обобщенной синхронизации в системах со сложной топологией аттрактора. В качестве объектов исследования выбраны однонаправленно связанные системы Лоренца, а для диагностики синхронного режима использован модифицированный метод вспомогательной системы. Результатом работы является доказательство наличия мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора.

Обобщенная система Рабиновича–Фабриканта: уравнения и динамика

Цель настоящей работы — численное исследование обобщенной модели Рабиновича–Фабриканта, полученной с использованием формализма Лагранжа и описывающей трехмодовое взаимодействие в присутствии кубической нелинейности общего вида. Указанная модель демонстрирует богатую динамику, обусловленную наличием в уравнениях нелинейности третьего порядка. Методы. Исследование основано на численном решении полученных аналитически дифференциальных уравнений, а также их численном бифуркационном анализе с помощью программы MаtCont. Результаты.

Мониторинг состояния головного мозга человека в задачах принятия решений при восприятии стимулов

Цель настоящего обзора – рассмотрение современного состояния исследования сенcомоторной интеграции в мозге человека при визуальном восприятии и последующем принятии решений в условиях недостаточной информации. Методы. В данном обзоре рассматриваются подходы частотно-временного вейвлет-анализа для выявления особенностей активности мозга при выполнении перцептивных задач, а также возможности использования подобных методов в задачах построения интерфейсов мозг – компьютер. Результаты.

Мониторинг состояния головного мозга человека в задачах принятия решений при восприятии стимулов

Цель настоящего обзора – рассмотрение современного состояния исследования сенcомоторной интеграции в мозге человека при визуальном восприятии и последующем принятии решений в условиях недостаточной информации. Методы. В данном обзоре рассматриваются подходы частотно-временного вейвлет-анализа для выявления особенностей активности мозга при выполнении перцептивных задач, а также возможности использования подобных методов в задачах построения интерфейсов мозг-компьютер. Результаты.

Подходы к исследованию мультистабильности пространственно-временной динамики двухвозрастной популяции

Цель работы – исследование пространственно-временной динамики лимитированных популяций с возрастной структурой, заселяющих двумерный ареал и способных на миграцию на большие расстояния. Для этого предложена модель – система нелокально связанных нелинейных двумерных отображений с нелинейной функцией связи. Исследуются условия возникновения разных типов неоднородного пространственного распределения, сочетающие когерентные и некогерентные режимы на разных участках, а также уединенные состояния. Методы.

Подходы к исследованию мультистабильности пространственно-временной динамики двухвозрастной популяции

Цель работы – исследование пространственно-временной динамики лимитированных популяций с возрастной структурой, заселяющих двумерный ареал и способных на миграцию на большие расстояния. Для этого предложена модель – система нелокально связанных нелинейных двумерных отображений с нелинейной функцией связи. Исследуются условия возникновения разных типов неоднородного пространственного распределения, сочетающие когерентные и некогерентные режимы на разных участках, а также уединенные состояния. Методы.

Мультистабильность и эффекты памяти в динамической системе с косимметричным потенциалом

Цель настоящего исследования – анализ сильной мультистабильности в динамической системе с косимметрией. Исследуется динамика и реализация стационарных состояний в механической системе с двумя степенями свободы. Минимум потенциальной энергии системы достигается на кривой в форме эллипса, что порождает континуальное семейство равновесий и сильную мультистабильность. Данная задача относится к классу динамических систем с косимметрией. Методы. Для анализа системы применялись методы вычислительного качественного анализа динамических систем и теории косимметрии. Результаты.

«Странные волны» в ансамбле генераторов ван дер Поля

Цель. Исследование процессов пространственной разупорядоченности и развития фазовой мультистабильности в дискретной среде из ангармонических осцилляторов. Методы. Компьютерное моделирование ангармонической среды ансамблем генераторов ван дер Поля с локальными диффузионными связями; численное исследование математической модели, исследование фазовой динамики, визуализация формирующихся пространственных структур при помощи распределения разности фаз. Результаты.

Страницы