Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Khorev V. S., Grubov V. V., Badarin A. A. Mathematical model and dynamical analysis of the human equilibrium seeking training [Хорев В. С., Грубов В. В., Бадарин А. А. Математическая модель и динамический анализ тренировки удержания равновесия] // Известия вузов. ПНД. 2021. Т. 29, вып. 3. С. 409-420. DOI: 10.18500/0869-6632-2021-29-3-409-420


Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 924)
Язык публикации: 
английский
Тип статьи: 
Научная статья
УДК: 
530.182

Mathematical model and dynamical analysis of the human equilibrium seeking training
[Математическая модель и динамический анализ тренировки удержания равновесия]

Авторы: 
Хорев Владимир Сергеевич, Университет Иннополис
Грубов Вадим Валерьевич, Балтийский Федеральный Университет им. И. Канта
Бадарин Артем Александрович, Балтийский Федеральный Университет им. И. Канта
Аннотация: 

Цель настоящего исследования – определить набор выигрышных для удержания равновесия комбинаций взаимодействующих мышц ног на основе анализа данных математической модели балансировочной платформы. Методы. В данной работе используется разработанная математическая модель балансировочной платформы, базирующаяся на механических принципах. Для статистического анализа связей между временными рядами рассчитываются корреляции Пирсона, а для статистического анализа данных – метод дисперсионного анализа (ANOVA) и постфакторный анализ. Результаты. Предложена математическая модель балансировочной платформы. Получены распределения коррелированных пар мышц для модели балансировочной платформы. В результате использования численного моделирования определены границы нахождения возможного паттерна активации мышц, который будет положительно повлиять на удержание равновесия. С помощью сравнительного анализа экспериментальных и модельных данных подтверждено наличие экспериментальной комбинации взаимодействующих мышц в наборе выигрышных комбинаций. Заключение. Полученные результаты подтверждают, что, как модель, так и нетренированные испытуемые смогли развить способность поддерживать равновесие на балансирующей платформе. Продолжительность самой длинной успешной попытки удержания равновесия значительно меняется от сессии к сессии. Испытуемые были более успешны, чем модель, и продемонстрировали более длительные попытки удержания равновесия во время экспериментальных сессий. Анализ данных модели показал, что увеличение коррелированного взаимодействия должно быть специфическим, а не случайным, чтобы положительно влиять на поддержание равновесия. Также было показано, что неограниченное
увеличение корреляции даже между потенциально выигрышными парами мышц не приведет к более длительному удержанию равновесия.

Благодарности: 
Работа поддержана грантом Президента России для государственной поддержки ведущих научных школ Российской Федерации НШ-2594.2020.2
Список источников: 
  1. Hayashibe M, Guiraud D, Pons JL, Farina D. Biosignal Processing and Computational Methods to Enhance Sensory Motor Neuroprosthetics. Frontiers Media SA; 2016. 434 p. DOI: 10.3389/fnins.2015.00434.
  2. Dutt-Mazumder A, Dhar S, Dutt-Mazumder C. Postural stability variables for dynamic equilibrium. Journal of Nature and Science. 2018;4(12):e451.
  3. Elices I, Levi R, Arroyo D, Rodriguez FB, Varona P. Robust dynamical invariants in sequential neural activity. Scientific Reports. 2019;9(1):9048. DOI: 10.1038/s41598-019-44953-2.
  4. Maksimenko VA, Pavlov A, Runnova AE, Nedaivozov V, Grubov V, Koronovskii A, Pchelin[1]tseva SV, Pitsik E, Pisarchik AN, Hramov AE. Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dynamics. 2018;91(4):2803– 2817. DOI: 10.1007/s11071-018-4047-y.
  5. Melnik A, Hairston WD, Ferris DP, Konig P. EEG correlates of sensorimotor processing: Independent components involved in sensory and motor processing. Scientific Reports. 2017;7(1): 4461. DOI: 10.1038/s41598-017-04757-8.
  6. Pitsik E, Frolov N, Kraemer KH, Grubov V, Maksimenko V, Kurths J, Hramov A. Motor execution reduces EEG signals complexity: Recurrence quantification analysis study. Chaos. 2020;30(2):023111. DOI: 10.1063/1.5136246.
  7. Reis PMR, Hebenstreit F, Gabsteiger F, von Tscharner V, Lochmann M. Methodological aspects of EEG and body dynamics measurements during motion. Frontiers in Human Neuroscience. 2014;8:156. DOI: 10.3389/fnhum.2014.00156.
  8. Edmunds KJ, Petersen H, Hassan M, Yassine S, Olivieri A, Barollo F, Fridriksdottir R, Edmunds P, Gıslason MK, Fratini A. Cortical recruitment and functional dynamics in postural control adaptation and habituation during vibratory proprioceptive stimulation. Journal of Neural Engineering. 2019;16(2):026037. DOI: 10.1088/1741-2552/ab0678.
  9. Herold F, Torpel A, Schega L, Muller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements – a systematic review. European Review of Aging and Physical Activity. 2019;16:10. DOI: 10.1186/s11556-019-0217-2.
  10. Maksimenko VA, Luttjohann A, Makarov VV, Goremyko MV, Koronovskii AA, Nedaivozov V, Runnova AE, van Luijtelaar G, Hramov AE, Boccaletti S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Physical Review E. 2017;96(1):012316. DOI: 10.1103/PhysRevE.96.012316.
  11. Mierau A, Pester B, Hulsd unker T, Schiecke K, Struder HK, Witte H. Cortical correlates of human balance control. Brain Topography. 2017;30(4):434–446. DOI: 10.1007/s10548-017-0567-x.
  12. Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage. 2019;188:557–571. DOI: 10.1016/j.neuroimage.2018.12.045.
  13. Li Y, Levine WS, Loeb GE. A two-joint human posture control model with realistic neural delays. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2012;20(5):738–748. DOI: 10.1109/TNSRE.2012.2199333.
  14. Markowitz J, Herr H. Human leg model predicts muscle forces, states, and energetics during walking. PLoS Computational Biology. 2016;12(5):e1004912. DOI: 10.1371/journal.pcbi.1004912.
  15. Suzuki Y, Nomura T, Casadio M, Morasso P. Intermittent control with ankle, hip, and mixed strategies during quiet standing: A theoretical proposal based on a double inverted pendulum model. Journal of Theoretical Biology. 2012;310:55–79. DOI: 10.1016/j.jtbi.2012.06.019.
  16. Al-Dirini RMA, Reed MP, Hu J, Thewlis D. Development and validation of a high anatomical fidelity FE model for the buttock and thigh of a seated individual. Annals of Biomedical Engineering. 2016;44(9):2805–2816. DOI: 10.1007/s10439-016-1560-3.
  17. Der R, Martius G. Self-organized behavior generation for musculoskeletal robots. Frontiers in Neurorobotics. 2017;11:8. DOI: 10.3389/fnbot.2017.00008.
  18. Yao S, Zhuang Y, Li Z, Song R. Adaptive admittance control for an ankle exoskeleton using an EMG-driven musculoskeletal model. Frontiers in Neurorobotics. 2018;12:16. DOI: 10.3389/fnbot.2018.00016.
  19. Loram ID, Maganaris CN, Lakie M. Paradoxical muscle movement in human standing. The Journal of Physiology. 2004;556(3):683–689. DOI: 10.1113/jphysiol.2004.062398.
  20. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. Journal of Neurophysiology. 1998;80(3):1211–1221. DOI: 10.1152/jn.1998.80.3.1211.
  21. Luu BL, Inglis JT, Huryn TP, Van der Loos HFM, Croft EA, Blouin LS. Human standing is modified by an unconscious integration of congruent sensory and motor signals. The Journal of Physiology. 2012;590(22):5783–5794. DOI: 10.1113/jphysiol.2012.230334.
  22. Adkin AL, Campbell AD, Chua R, Carpenter MG. The influence of postural threat on the cortical response to unpredictable and predictable postural perturbations. Neuroscience Letters. 2008;435(2):120–125. DOI: 10.1016/j.neulet.2008.02.018.
  23. Chang CJ, Yang TF, Yang SW, Chern JS. Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented reality. Frontiers in Aging Neuroscience. 2016;8:80. DOI: 10.3389/fnagi.2016.00080.
  24. Jacobs JV, Fujiwara K, Tomita H, Furune N, Kunita K, Horak FB. Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation. Clinical Neurophysiology. 2008;119(6):1431–1442. DOI: 10.1016/j.clinph.2008.02.015.
  25. Mochizuki G, Sibley KM, Esposito JG, Camilleri JM, McIlroy WE. Cortical responses associated with the preparation and reaction to full-body perturbations to upright stability. Clinical Neurophysiology. 2008;119(7):1626–1637. DOI: 10.1016/j.clinph.2008.03.020.
  26. Rodrick D, Jayaprakash V. Neural mechanisms of anticipatory balance control. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2013;57(1):915–919. DOI: 10.1177/1541931213571203.
  27. Tse YYF, Petrofsky J, Berk L, Daher N, Lohman E, Cavalcanti P, Laymon M, Rodrigues S, Lodha R, Potnis PA. Postural sway and EMG analysis of hip and ankle muscles during balance tasks. International Journal of Therapy and Rehabilitation. 2013;20(6):280–288. DOI: 10.12968/ijtr.2013.20.6.280.
  28. Asai Y, Tateyama S, Nomura T. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface. PLoS One. 2013;8(5):e62956. DOI: 10.1371/journal.pone.0062956.
  29. Blaszczyszyn M, Konieczny M, Pakosz P. Analysis of ankle sEMG on both stable and unstable surfaces for elderly and young women-a pilot study. International Journal of Environmental Research and Public Health. 2019;16(9):1544. DOI: 10.3390/ijerph16091544.
  30. Blenkinsop GM, Pain MTG, Hiley MJ. Balance control strategies during perturbed and unperturbed balance in standing and handstand. Royal Society Open Science. 2017;4(7):161018. DOI: 10.1098/rsos.161018.
  31. Wang CC, Jiang BC, Huang PM. The relationship between postural stability and lower-limb muscle activity using an entropy-based similarity index. Entropy. 2018;20(5):320. DOI: 10.3390/e20050320.
  32. Boonstra TW, Danna-Dos-Santos A, Xie HB, Roerdink M, Stins JF, Breakspear M. Muscle networks: Connectivity analysis of EMG activity during postural control. Scientific Reports. 2015;5(1):17830. DOI: 10.1038/srep17830.
  33. Gebel A, Luder B, Granacher U. Effects of increasing balance task difficulty on postural sway and muscle activity in healthy adolescents. Frontiers in Physiology. 2019;10:1135. DOI: 10.3389/fphys.2019.01135.
  34. Noe F, Garcıa-Masso X, Paillard T. Inter-joint coordination of posture on a seesaw device. Journal of Electromyography and Kinesiology. 2017;34:72–79. DOI: 10.1016/j.jelekin.2017.04.003.
  35. Rougier PR, Perennou D. Postural control in healthy young adults using a double seesaw device. Journal of Biomechanics. 2019;83:214–220. DOI: 10.1016/j.jbiomech.2018.11.048.
  36. Lee D, Li Z, Sohail QZ, Jackson K, Fiume E, Agur A. A three-dimensional approach to pennation angle estimation for human skeletal muscle. Computer Methods in Biomechanics and Biomedical Engineering. 2015;18(13):1474–1484. DOI: 10.1080/10255842.2014.917294.
  37. Moissenet F, Cheze L, Dumas R. A 3D lower limb musculoskeletal model for simultaneous ´ estimation of musculo-tendon, joint contact, ligament and bone forces during gait. Journal of Biomechanics. 2014;47(1):50–58. DOI: 10.1016/j.jbiomech.2013.10.015.
  38. Zhang J, Wu C, Wang Y. Human fall detection based on body posture spatio-temporal evolution. Sensors (Basel). 2020;20(3):946. DOI: 10.3390/s20030946.
  39. Serra-Ano P, Lopez-Bueno L, Garcıa-Masso X, Pellicer-Chenoll MT, Gonzalez LM. Postural control mechanisms in healthy adults in sitting and standing positions. Perceptual and Motor Skills. 2015;121(1):119–134. DOI: 10.2466/26.25.PMS.121c10x4.
  40. Polastri PF, Barela JA. Adaptive visual re-weighting in children’s postural control. PLoS One. 2013;8(12):e82215. DOI: 10.1371/journal.pone.0082215.
  41. Funato T, Aoi S, Tomita N, Tsuchiya K. Smooth enlargement of human standing sway by instability due to weak reaction floor and noise. Royal Society Open Science. 2016;3(1):150570. DOI: 10.1098/rsos.150570.
  42. Hill AV. The heat of shortening and the dynamic constants of muscles. Proceedings of the Royal Society B: Biological Sciences. 1938;126(843):136–195. DOI: 10.1098/rspb.1938.0050.
  43. Sanger TD. Bayesian filtering of myoelectric signals. Journal of Neurophysiology. 2007;97(2): 1839–1845. DOI: 10.1152/jn.00936.2006.
  44. van Beers RJ, Haggard P, Wolpert DM. The role of execution noise in movement variability. Journal of Neurophysiology. 2004;91(2):1050–1063. DOI: 10.1152/jn.00652.2003.
  45. Macefield G, Gandevia SC. Peripheral and central delays in the cortical projections from human truncal muscles. Rapid central transmission of proprioceptive input from the hand but not the trunk. Brain. 1992;115(1):123–135. DOI: 10.1093/brain/115.1.123.
  46. Jeka J, Kiemel T. Modeling of Human Postural Control. In: Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg; 2009. P. 2381–2384. DOI: 10.1007/978-3-540-29678-2.
  47. Tresch M, Jindrich DL. Spinal and Neuromechanical Integration: Overview. In: Encyclopedia of Computational Neuroscience. Springer, New York; 2014. 3243 p. DOI: 10.1007/978-1-4614-7320-6.
  48. Perry SD, Santos LC, Patla AE. Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Research. 2001;913(1):27–34. DOI: 10.1016/s0006-8993(01)02748-2.
  49. Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P. Bounded stability of the quiet standing posture: An intermittent control model. Human Movement Science. 2008;27(3):473–495. DOI: 10.1016/j.humov.2007.11.005.
  50. Rahnami K, Arabshahi P, Gray A. Neural network based model reference controller for active queue management of TCP flows. IEEE Aerospace Conference. 5–12 March 2005, Big Sky, MT, USA. IEEE; 2005. P. 1696–1704. DOI: 10.1109/AERO.2005.1559464.
  51. Swain PS, Longtin A. Noise in genetic and neural networks. Chaos. 2006;16(2):026101. DOI: 10.1063/1.2213613.
  52. Ascher UM, Petzold LR. Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations. 1st edition. Society for Industrial and Applied Mathematics, USA; 1998. 332 p.
  53. Berger DJ, d’Avella A. Effective force control by muscle synergies. Frontiers in Computational Neuroscience. 2014;8:46. DOI: 10.3389/fncom.2014.00046.
  54. Pearson K. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London. 1895;58(347–352):240–242. DOI: 10.1098/rspl.1895.0041.
  55. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945;1(6):80–83. DOI: 10.2307/3001968.
Поступила в редакцию: 
01.11.2020
Принята к публикации: 
19.01.2021
Опубликована: 
31.05.2021