Для цитирования:
Долинина А. Ю., Сулейманова Е. М., Корнилов М. В., Сысоева М. В., Сысоев И. В. Нелинейные свойства тета-ритма головного мозга // Известия вузов. ПНД. 2025. Т. 33, вып. 6. С. 873-897. DOI: 10.18500/0869-6632-003188, EDN: CNWBIT
Нелинейные свойства тета-ритма головного мозга
Цель настоящего исследования — выявить возможные нелинейные свойства сигналов локальных потенциалов мозга при тета-ритме.
Методы. Нелинейность в сигнале проявляется в синхронном поведении основной частоты и её высших гармоник, для диагностики чего использовались скелетоны в разных частотных диапазонах, рассчитывался коэффициент фазовой синхронизации и кросспектральный анализ.
Результаты. По многочасовым записям у 14 животных были выделены основная частота и вторая гармоника в спектре во время тета-ритма. На основании построенных по этим записям скелетонов была диагностирована частотная синхронизация между основной частотой и второй гармоникой в отношении 2:1 на промежутках до 10 с в обоих симметричных отведениях. Также в ряде записей была диагностирована и фазовая синхронизация, но на более коротких промежутках – порядка 2–4 с.
Заключение. Исследование доказало, что наблюдаемая при тета-ритме у здоровых лабораторных животных в спектре сигналов локальных потенциалов мозга компонента на частотах порядка удвоенной основной частоты ритма – действительно вторая гармоника основной частоты ритма. Таким образом, тета-ритм часто является существенно нелинейным сигналом.
- Buzs'a ki G. Rhythms of the Brain. Oxford: Oxford University Press, 2006. 464 p. 10.1093/acprof:oso/9780195301069.001.000110.1093/acprof:oso/9780195301069.001.0001.
- Bas ar E., Basar-Eroglu C., Karakas S., Sch"urmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes // Int. J. Psychophysiol. 2001. Vol. 39, no. 2-3. P. 241-248 DOI: 10.1016/s0167-8760(00)00145-8.
- Waldhoer M., Bartlett S. E., Whistler J. L. Opioid receptors // Annu. Rev. Biochem. 2004. Vol. 73. P. 953-990 DOI: 10.1146/annurev.biochem.73.011303.073940.
- Ноздрачев А. Д., Баранникова И. А., Батуев А. С., Кассиль В. Г., Константинов А. И., Лапицкий В. П., Матюшкин Д. П., Пушкарев Ю. П. Общий курс физиологии человека и животных. Книга первая. Физиология нервной, мышечной и сенсорной систем. М.: Высшая школа, 1991. 509 с.
- L'e ger D., Debellemaniere E., Rabat A., Bayon V., Benchenane K., Chennaoui M. Slow-Wave Sleep: From the Cell to the Clinic // Sleep Medicine Reviews. 2018. Vol. 41. P. 113-132. DOI: 10.1016/j.smrv.2018.01.008.
- Виноградова О. С. Гиппокамп и память. М.: Наука, 1975. 332 с.
- Crouzier D., Baubichon D., Bourbon F., Testylier G. Acetylcholine release, EEG spectral analysis, sleep staging and body temperature studies: a multiparametric approach on freely moving rats // J. Neurosci. Methods. 2006. Vol. 151, no. 2. P. 159-167 DOI: 10.1016/j.jneumeth.2005.07.003.
- Young C. K., McNaughton N. Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats // Cerebral Cortex. 2009. Vol. 19, no. 1. P. 24-40 DOI: 10.1093/cercor/bhn055.
- Silva A. L., Fry W. H.,D., Sweeney C., Trainor B. C. Effects of photoperiod and experience on aggressive behavior in female California mice // Behavioural Brain Research. 2010. Vol. 208, no. 2. P. 528-534 DOI: 10.1016/j.bbr.2009.12.038.
- Green J. D., Arduini A. A. Hippocampal electrical activity in arousal // Journal of Neurophysiology. 1954. Vol. 17, no. 6. P. 533-557 DOI: 10.1152/jn.1954.17.6.533.
- Vanderwolf C. H. Hippocampal electrical activity and voluntary movement in the rat // Electroencephalogr. Clin. Neurophysiol. 1969. Vol. 26, no. 4. P. 407-418 DOI: 10.1016/0013-4694(69)90092-3.
- Buzs'a ki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory // Hippocampus. 2005. Vol. 15, no. 7. P. 827-840 DOI: 10.1002/hipo.20113.
- Nun ez A., Bu no W. The theta rhythm of the hippocampus: From neuronal and circuit mechanisms to behavior // Front. Cell. Neurosci. 2021. Vol. 15. P. 649262 DOI: 10.3389/fncel.2021.649262.
- Maurer A. P., Vanrhoads S. R., Sutherland G. R., Lipa P., McNaughton B. L. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus // Hippocampus. 2005. Vol. 15, no. 7. P. 841-852 DOI: 10.1002/hipo.20114.
- Buzs'a ki G., Leung L.,W., Vanderwolf C.,H. Cellular bases of hippocampal EEG in the behaving rat // Brain Res. Rev. 1983. Vol. 6, no. 2. P. 139-171 DOI: 10.1016/0165-0173(83)90037-1.
- Terrazas A., Krause M., Lipa P., Gothard K. M., Barnes C. A., McNaughton B. L. Self-motion and the hippocampal spatial metric // J. Neurosci. 2005. Vol. 25, no. 35. P. 8085-8096 DOI: 10.1523/JNEUROSCI.0693-05.2005.
- Czurk'o A., Hirase H., Csicsvari J., Buzs'aki G. Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel // Eur. J. Neurosci. 2001. Vol. 11, no. 1. P. 344-352 DOI: 10.1046/j.1460-9568.1999.00446.x.
- Sheremet A., Burke S. N., Maurer A. P. Movement enhances the nonlinearity of hippocampal theta // J. Neurosci. 2016. Vol. 36, no. 15. P. 4218-4230 DOI: 10.1523/JNEUROSCI.3564-15.2016.
- Harper R. M. Frequency changes in hippocampal electrical activity during movement and tonic immobility // Physiol. Behav. 1971. Vol. 7, no. 1. P. 55-58 DOI: 10.1016/0031-9384(71)90235-6.
- Coenen A. M. Frequency analysis of rat hippocampal electrical activity // Physiol. Behav. 1975. Vol. 14, no. 3. P. 391-394 DOI: 10.1016/0031-9384(75)90053-0.
- Leung L. W., Lopes da Silva F. H., Wadman W. J. Spectral characteristics of the hippocampal EEG in the freely moving rat // Electroencephalogr. Clin. Neurophysiol. 1982. Vol. 54, no. 2. P. 203-219. DOI: 10.1016/0013-4694(82)90162-6.
- Blekhman I. I., Fradkov A. L., Nijmeijer H., Pogromsky A.,Y u. On self-synchronization and controlled synchronization // Systems and Control Letters. 1997. Vol. 31, no. 5. P. 299-305. DOI: 10.1016/S0167-6911(97)00047-9.
- Blekhman I. I. Frequency synchronization and its possible role in microworld phenomena // Autom. Remote Control. 2020. Vol. 81. P. 1405-1412. DOI: 10.1134/S0005117920080044.
- Tang D. Y., Dykstra R., Hamilton M. W., Heckenberg N. R. Stages of chaotic synchronization // Chaos. 1998. Vol. 8, no. 3. P. 697-701. DOI: 10.1063/1.166352.
- Suleymanova E. M., Shangaraeva V. A., van Rijn C. M., Vinogradova L. V. The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats // Neuroscience. 2016. Vol. 334. P. 191-200. DOI: 10.1016/j.neuroscience.2016.08.004.
- Dolinina A.,Y u., van Rijn C. M., Sysoeva M. V., Sysoev I. V. Detection of spike-wave discharge restarts in genetic rat model based on frequency dynamics // Cybernetics and Physics. 2022. Vol. 11, no. 3. P. 121-130. DOI: 10.35470/2226-4116-2022-11-3-121-130.
- Dolinina A.,Y u., Sysoeva M. V., van Rijn C. M., Sysoev I. V. Frequency synchronization reveals that spike-wave discharges in WAG/RIJ rats are significantly nonlinear phenomenon // Journal of Biological Systems. 2024. Vol. 32, no. 1. P. 239-250 DOI: 10.1142/S0218339024500098.
- Junge L., Parlitz U. Phase synchronization of coupled Ginzburg-Landau equations // Phys. Rev. E. 2000. Vol. 62, no. 1. P. 438-441 DOI: 10.1103/PhysRevE.62.438.
- Пиковский А. С., Роземблюм Н. Г., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 493 с.
- Mormann F., Lehnertz K., David P., Elder C. E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients // Physica D. 2000. Vol. 144, no. 3-4. P. 358–-369 DOI: 10.1016/S0167-2789(00)00087-7.
- Mormann F., Andrzejak R. G., Kraskov A., Lehnertz K., Grassberger P. Measuring synchronization in coupled model systems: A comparison of different approaches // Physica D. 2007. Vol. 225, no. 1. P. 29-42 DOI: 10.1016/J.PHYSD.2006.09.039.
- Nikias C. L., Raghuveer M. R. Bispectrum estimation: A digital signal processing framework // Proceedings of the IEEE. 1987. Vol. 75, no. 7. P. 869-891 DOI: 10.1109/PROC.1987.13824.
- Sigl J. C., Chamoun N. G. An introduction to bispectral analysis for the electroencephalogram // J. Clin. Monitor. Comput. 1994. Vol. 10. P. 392-404 DOI: 10.1007/BF01618421.
- Басараб М. А., Волосюк В. К., Горячкин О. В., Зеленский А. А., Кравченко В. Ф., Ксендзук А. В., Кутуза Б. Г., Лукин В. В., Троцкий А. В., Яковлев В. П. Цифровая обработка сигналов и изображений в радиофизических приложениях. Москва: ООО Издательская фирма <<Физико-математическая литература>>, 2007. 544 с.
- Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Millman K. J., Mayorov N., Nelson A. R.,J., Jones E., Kern R., Larson E., Carey C. J., Polat I., Feng Y u., Moore E. W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris C. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P., SciPy 1.0 Contributor s. SciPy 1.0: fundamental algorithms for scientific computing in Python // Nat. Methods. 2020. Vol. 17. P. 261-272 DOI: 10.1038/s41592-019-0686-2.
- Kramis R., Vanderwolf C. H., Bland B. H. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital // Exp. Neurol. 1975. Vol. 49, no. 1. P. 58-85 DOI: 10.1016/0014-4886(75)90195-8.
- Stewart M., Fox S. E. Detection of an atropine-resistant component of the hippocampal theta rhythm in urethane-anesthetized rats // Brain Res. 1989. Vol. 500, no. 1-2. P. 55-60 DOI: 10.1016/0006-8993(89)90299-0.
- Fuhrmann F., Justus D., Sosulina L., Kaneko H., Beutel T., Friedrichs D., Schoch S., Schwarz M. K., Fuhrmann M., Remy R. Locomotion, theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal glutamatergic circuit // Neuron. 2015. Vol. 86, no. 5. P. 1253-1264 DOI: 10.1016/j.neuron.2015.05.001.
- Justus D., Dal"u gge D., Bothe S., Fuhrmann F., Hannes C., Kaneko H., Friedrichs D., Sosulina L., Schwarz I., Elliott D.,A., Schoch S., Bradke F., Schwarz M.,K., Remy S. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections // Nat. Neurosci. 2017. Vol. 20, no. 1. P. 16-19. DOI: 10.1038/nn.4447.
- Zhou T. L., Tamura R., Kuriwaki J., Ono T. Comparison of medial and lateral septal neuron activity during performance of spatial tasks in rats // Hippocampus. 1999. Vol. 9, no. 3. P. 220-234 DOI: 10.1002/(SICI)1098-1063(1999)9:3<220::AID-HIPO3>3.0.CO;2-E.
- Tsanov M. Speed and oscillations: medial septum integration of attention and navigation // Front. Syst. Neurosci. 2017. Vol. 11. P. 67 DOI: 10.3389/fnsys.2017.00067.
- Colgin L. L. Mechanisms and functions of theta rhythms // Annu. Rev. Neurosci. 2013. Vol. 36. P. 295-312 DOI: 10.1146/annurev-neuro-062012-170330.
- 611 просмотров