Для цитирования:
Кузнецов А. П., Сатаев И. Р., Седова Ю. В., Тюрюкина Л. В. О моделировании динамики связанных автоколебательных осцилляторов с помощью о моделировании динамики связанных простейших фазовых отображений // Известия вузов. ПНД. 2012. Т. 20, вып. 2. С. 112-137. DOI: 10.18500/0869-6632-2012-20-2-112-137
О моделировании динамики связанных автоколебательных осцилляторов с помощью о моделировании динамики связанных простейших фазовых отображений
Рассматривается задача описания динамики связанных автоколебательных осцилляторов с помощью дискретных отображений на торе. Обсуждается методология построения таких отображений как простейших формальных моделей, так и физически мотивированных систем. Обсуждаются отличия случаев диссипативной и реактивной связи осцилляторов. С помощью метода карт ляпуновских показателей выявляются области двухи трехчастотной квазипериодичности и хаоса. Исследуется и сопоставляется устройство резонансной паутины Арнольда для разных моделей.
- Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 496 с.
- Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 359 с.
- Блехман И.И. Синхронизация в природе и технике. М.: Наука, 1981. 352 с.
- Balanov A.G., Janson N.B., Postnov D.E., Sosnovtseva O. Synchronization: From simple to complex. Springer, 2009. 437 p.
- Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. Москва–Ижевск: РХД, 2002. 508 с.
- Kuramoto Y. Chemical oscillations, waves, and turbulence. (Springer Ser. Synergetics, vol.19.) Berlin: Springer, 1984. 156 p.
- Гласс Л., Мэки М. От часов к хаосу: Ритмы жизни. М.: Мир, 1991. 248 с. [Glass L., MacKey M.C. From clocks to chaos: The rhythms of life. Princeton, NY: Princeton Univ. Press, 1988. 248 p.
- Winfree A. The geometry of biological time. 2nd ed. New York: Springer, 2001. 777 p.
- Анищенко В.С., Астахов В.В., Вадивасова Т.Е, Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. Москва–Ижевск: Институт компьютерных исследований, 2008. 136 с.
- Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2-е изд., 2005. 292 с.
- Репин Б.Г., Дубинов А.Е. Исследование режимов фазировки трех виркаторов в рамках модели связанных осцилляторов ван дер Поля // Письма в ЖТФ. 2006. T. 76, Вып. 4. C. 99.
- Kawahara T. Coupled Van der Pol oscillators – A model of excitatory and inhibitory neural interactions // Biological Cybernetics. 1980. Vol. 39, No 1. P. 37.
- Crowley M.F, Epstein I.R. Experimental and theoretical studies of a coupled chemical oscillator: phase death, multistability and in-phase and out-of-phase entrainment // J. Phys. Chem. 1989. Vol. 93, No 6. P. 2496.
- Anishchenko V.S., Astakhov V.V., Neiman A.B., Vadivasova T.E., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer, Berlin, Heidelberg, 2007. 460 p.
- Anishchenko V.S. Dynamical Chaos – Models and Experiments. Appearance Routes and Structure of Chaos in Simple Dynamical Systems // World Scientific Series on Nonlinear Science. Series A. 1995. Vol. 8. 384 p.
- Дмитриев А.С., Кислов В.Я. Стохастические колебания в радиофизике и электронике. М.: Наука, 1989. 280 с.
- Madan R. Chua’s circuit: A paradigm for chaos. World Scientific, 1993. 1042 p.
- Volkov E.I., Romanov V.A. Bifurcations in the system of two identical diffusively coupled Brusselators // Physica Scripta. 1995. Vol. 51, No 1. P. 19.
- Шустер Г. Детерминированный хаос. М.: Мир, 1988. 253 с.
- Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. 356 с.
- Kim S., MacKay R.S., Guckenheimer J. Resonance regions for families of torus maps // Nonlinearity. 1989. Vol. 2, No 3. P. 391.
- Baesens С., Guckenheimer J., Kim S. Simple resonance regions of torus diffeomor-phisms // Patterns and dynamics in reactive media, Springer. 1991. P. 1.
- Baesens С., Guckenheimer J., Kim S., MacKay R.S. Three coupled oscillators: mode locking, global bifurcations and toroidal chaos // Physica D. 1991. Vol. 49. P. 387.
- Anishchenko V., Astakhov S., Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force // Europhys. Lett. 2009. Vol. 86. 30003.
- Анищенко В.С., Астахов С.В., Вадивасова Т.Е., Феоктистов А.В. Численное и экспериментальное исследование внешней синхронизации двухчастотных колебаний // Нелинейная динамика. 2009. Т. 5, No 2. С. 237.
- Кузнецов А.П, Сатаев И.Р., Тюрюкина Л.В. Синхронизация и многочастотные колебания в цепочке фазовых осцилляторов // Нелинейная динамика. 2010, T. 6, No 4. C.693.
- Заславский Г.М. Физика хаоса в гамильтоновых системах. Москва–Ижевск: РХД, 2004. 288 с.
- Морозов А.Д. Резонансы, циклы и хаос в квазиконсервативных системах. Ижевск: Институт компьютерных исследований, 2005. 424 с.
- Vasylenko A., Maistrenko Yu., Hasler M. Modeling phase synchronization in systems of two and three coupled oscillators // Nonlinear Oscillations. 2004. Vol. 7, No 3. P. 301.
- Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos and multistability in the discrete Kuramoto model // International Journal of Bifurcation and Chaos. 2010. Vol. 20, No 6. P. 1811.
- Rand R.H., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics, 1980. Vol. 15. P. 387.
- Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two nonscalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1–2. p.8.
- Кузнецов А.П., Станкевич Н.В., Тюрюкина Л.В. Связанные осцилляторы ван дер Поля и ван дер Поля–Дуффинга: Фазовая динамика и компьютерное моделирование // Известия вузов. Прикладная нелинейная динамика. 2008. T. 16, No 4. C. 101.
- Lee E., Cross. M.C. Pattern formation with trapped ions // Phys. Rev. Lett. 2011. Vol. 106. 143001.
- Khibnik A.I., Braimanc Y., Kennedyd T.A.B., Wiesenfeldd K. Phase model analysis of two lasers with injected field // Physica D, 1998. Vol. 111, No 1–4. P. 295.
- Maistrenko Y., Popovych O., Burylko O. Mechanism of Desynchronization in the Finite-Dimensional Kuramoto Model // Phys. Rev. Lett., 2004. Vol. 93, 084102.
- Broer H., Simo C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol’d resonance web // Reprint from the Belgian Mathematical Society, 2008, p. 769–787.
- Галкин О.Г. Фазовый захват для отображений тора типа Матье // Функциональный анализ и его приложения, 1993. T. 27, Вып. 1. C. 1.
- Froeschle С., Lega E., Guzzo M. Analysis of the chaotic behavior of orbits diusing along the Arnold web // Celestial Mechanics and Dynamical Astronomy. 2006. Vol. 95, No 1–4. P. 141.
- Guzzo M., Lega E., Froeschle С. First numerical evidence of global Arnold diffusion in quasi–integrable systems // arXiv:nlin/0407059.
- 2095 просмотров