Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Прохоров М. Д., Пономаренко В. И., Хорев В. С. Определение времени задержки по временным рядам на основе метода ближайших соседей //Известия вузов. ПНД. 2014. Т. 22, вып. 1. С. 3-15. DOI: https://doi.org/10.18500/0869-6632-2014-22-1-3-15

Язык публикации: 
русский

Определение времени задержки по временным рядам на основе метода ближайших соседей

Авторы: 
Прохоров Михаил Дмитриевич, Саратовский филиал Института радиотехники и электроники имени В.А.Котельникова РАН (СФ ИРЭ)
Пономаренко Владимир Иванович, Саратовский филиал Института радиотехники и электроники имени В.А.Котельникова РАН (СФ ИРЭ)
Хорев Владимир Срегеевич, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

Предложен метод определения времени запаздывания систем с задержкой по их временным рядам, основанный на применении метода ближайших соседей. Метод может быть применен к широкому классу систем с запаздыванием и остается эффективным при высоких уровнях динамического и измерительного шума.  

DOI: 
10.18500/0869-6632-2014-22-1-3-15
Библиографический список: 

1. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system // Opt. Commun. 1979. Vol. 30. P. 257. 2. Lang R., Kobayashi K. External optical feedback effects on semiconductor injection lasers // IEEE J. Quantum Electron. 1980. Vol. 16. P. 347. 3. Erneux T. Applied Delay Differential Equations. New York: Springer, 2009. 4. Epstein I. R. Delay effects and differential delay equations in chemical-kinetics // Int. Rev. in Phys. Chem. 1992. Vol. 11. P. 135. 5. Mokhov I.I., Smirnov D.A. El Nino Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices // Geophys. Research Lett. 2006. Vol. 33. L03708. 6. Mackey M.C., Glass L. Oscillations and chaos in physiological control systems // Science. 1977. Vol. 197. P. 287. 7. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993. 8. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183. 9. Fowler A.C., Kember G. Delay recognition in chaotic time series // Phys. Lett. A. 1993. Vol. 175. P. 402. 10. Hegger R., Bunner M.J., Kantz H., Giaquinta A.  ? Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558. 11. Bunner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A.  ? Reconstruction of systems with delayed feedback: (I) Theory // Eur. Phys. J. D. 2000. Vol. 10. P. 165. 12. Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D. 1997. Vol. 108. P. 113. 13. Kaplan D.T., Glass L. Coarse-grained embeddings of time series: Random walks, gaussian random process, and deterministic chaos // Physica D. 1993. Vol. 64. P. 431. 14. Bunner M.J., Meyer Th., Kittel A., Parisi J.  ? Recovery of the time-evolution equation of time-delay systems from time series // Phys. Rev. E. 1997. Vol. 56. P. 5083. 15. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336. 16. Ellner S.P., Kendall B.E., Wood S.N., McCauley E., Briggs C.J. Inferring mechanism from time-series data: Delay differential equations // Physica D. 1997. Vol. 110. P. 182. 17. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127. Вып. 3. С. 515. 18. Udaltsov V.S., Larger L., Goedgebuer J.P., Locquet A., Citrin D.S. Time delay identification in chaotic cryptosystems ruled by delay- differential equations // J. Opt. Technology. 2005. Vol. 72. P. 373. 19. Zunino L., Soriano M.C., Fischer I., Rosso O.A., Mirasso C.R. Permutation-information-theory approach to unveil delay dynamics from time- series analysis // Phys. Rev. E. 2010. Vol. 82. 046212. 20. Horbelt W., Timmer J., Voss H.U. Parameter estimation in nonlinear delayed feed-back systems from noisy data // Phys. Lett. A. 2002. Vol. 299. P. 513. 21. Dai C., Chen W., Li L., Zhu Y., Yang Y. Seeker optimization algorithm for parameter estimation of time-delay chaotic systems // Phys. Rev. E. 2011. Vol. 83. 036203. 22. Sorrentino F. Identification of delays and discontinuity points of unknown systems by using synchronization of chaos // Phys. Rev. E. 2010. Vol. 81. 066218. 23. Ma H., Xu B., Lin W., Feng J. Adaptive identification of time delays in nonlinear dynamical models // Phys. Rev. E. 2010. Vol. 82. 066210. 24. Siefert M. Practical criterion for delay estimation using random perturbations // Phys. Rev. E. 2007. Vol. 76. 026215. 25. Ponomarenko V.I., Prokhorov M.D. Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes // Phys. Rev. E. 2008. Vol. 78. 066207. 26. Yu D., Frasca M., Liu F. Control-based method to identify underlying delays of a nonlinear dynamical system // Phys. Rev. E. 2008. Vol. 78. 046209. 27. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206. 28. Farmer J.D., Sidorowich J.J. Predicting chaotic time series // Phys. Rev. Lett. 1987. Vol. 59. P. 845. 29. Garcнa P., Jimйnez J., Marcano A., Moleiro F. Local optimal metrics and nonlinear modeling of chaotic time series // Phys. Rev. Lett. 1996. Vol. 76. P. 1449. 30. Villermaux E. Memory-induced low frequency oscillations in closed convection boxes // Phys. Rev. Lett. 1995. Vol. 75. P. 4618.

Краткое содержание: 
Полный текст в формате PDF(Ru):