Для цитирования:
Прохоров М. Д., Пономаренко В. И., Хорев В. С. Определение времени задержки по временным рядам на основе метода ближайших соседей // Известия вузов. ПНД. 2014. Т. 22, вып. 1. С. 3-15. DOI: 10.18500/0869-6632-2014-22-1-3-15
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 207)
Язык публикации:
русский
Тип статьи:
Научная статья
УДК:
537.86
Определение времени задержки по временным рядам на основе метода ближайших соседей
Авторы:
Прохоров Михаил Дмитриевич, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Пономаренко Владимир Иванович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Хорев Владимир Сергеевич, Университет Иннополис
Аннотация:
Предложен метод определения времени запаздывания систем с задержкой по их временным рядам, основанный на применении метода ближайших соседей. Метод может быть применен к широкому классу систем с запаздыванием и остается эффективным при высоких уровнях динамического и измерительного шума.
Ключевые слова:
Список источников:
- Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system // Opt. Commun. 1979. Vol. 30. P. 257.
- Lang R., Kobayashi K. External optical feedback effects on semiconductor injection lasers // IEEE J. Quantum Electron. 1980. Vol. 16. P. 347.
- Erneux T. Applied Delay Differential Equations. New York: Springer, 2009.
- Epstein I. R. Delay effects and differential delay equations in chemical-kinetics // Int. Rev. in Phys. Chem. 1992. Vol. 11. P. 135.
- Mokhov I.I., Smirnov D.A. El Nino Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices // Geophys. Research Lett. 2006. Vol. 33. L03708.
- Mackey M.C., Glass L. Oscillations and chaos in physiological control systems // Science. 1977. Vol. 197. P. 287.
- Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
- Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.
- Fowler A.C., Kember G. Delay recognition in chaotic time series // Phys. Lett. A. 1993. Vol. 175. P. 402.
- Hegger R., Bunner M.J., Kantz H., Giaquinta A. Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558.
- Bunner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: (I) Theory // Eur. Phys. J. D. 2000. Vol. 10. P. 165.
- Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D. 1997. Vol. 108. P. 113.
- Kaplan D.T., Glass L. Coarse-grained embeddings of time series: Random walks, gaussian random process, and deterministic chaos // Physica D. 1993. Vol. 64. P. 431.
- Bunner M.J., Meyer Th., Kittel A., Parisi J. Recovery of the time-evolution equation of time-delay systems from time series // Phys. Rev. E. 1997. Vol. 56. P. 5083.
- Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336.
- Ellner S.P., Kendall B.E., Wood S.N., McCauley E., Briggs C.J. Inferring mechanism from time-series data: Delay differential equations // Physica D. 1997. Vol. 110. P. 182.
- Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127. Вып. 3. С. 515.
- Udaltsov V.S., Larger L., Goedgebuer J.P., Locquet A., Citrin D.S. Time delay identification in chaotic cryptosystems ruled by delay- differential equations // J. Opt. Technology. 2005. Vol. 72. P. 373.
- Zunino L., Soriano M.C., Fischer I., Rosso O.A., Mirasso C.R. Permutation-information-theory approach to unveil delay dynamics from time- series analysis // Phys. Rev. E. 2010. Vol. 82. 046212.
- Horbelt W., Timmer J., Voss H.U. Parameter estimation in nonlinear delayed feed-back systems from noisy data // Phys. Lett. A. 2002. Vol. 299. P. 513.
- Dai C., Chen W., Li L., Zhu Y., Yang Y. Seeker optimization algorithm for parameter estimation of time-delay chaotic systems // Phys. Rev. E. 2011. Vol. 83. 036203.
- Sorrentino F. Identification of delays and discontinuity points of unknown systems by using synchronization of chaos // Phys. Rev. E. 2010. Vol. 81. 066218.
- Ma H., Xu B., Lin W., Feng J. Adaptive identification of time delays in nonlinear dynamical models // Phys. Rev. E. 2010. Vol. 82. 066210.
- Siefert M. Practical criterion for delay estimation using random perturbations // Phys. Rev. E. 2007. Vol. 76. 026215.
- Ponomarenko V.I., Prokhorov M.D. Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes // Phys. Rev. E. 2008. Vol. 78. 066207.
- Yu D., Frasca M., Liu F. Control-based method to identify underlying delays of a nonlinear dynamical system // Phys. Rev. E. 2008. Vol. 78. 046209.
- Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.
- Farmer J.D., Sidorowich J.J. Predicting chaotic time series // Phys. Rev. Lett. 1987. Vol. 59. P. 845.
- Garcнa P., Jimйnez J., Marcano A., Moleiro F. Local optimal metrics and nonlinear modeling of chaotic time series // Phys. Rev. Lett. 1996. Vol. 76. P. 1449.
- Villermaux E. Memory-induced low frequency oscillations in closed convection boxes // Phys. Rev. Lett. 1995. Vol. 75. P. 4618.
Поступила в редакцию:
25.06.2013
Принята к публикации:
06.12.2013
Опубликована:
30.04.2014
Краткое содержание:
(загрузок: 107)
- 2400 просмотров