ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V. Autonomous generator of quasiperiodic oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 51-61. DOI: 10.18500/0869-6632-2010-18-2-51-61

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 154)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Autonomous generator of quasiperiodic oscillations

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Stankevich Natalija Vladimirovna, National Research University "Higher School of Economics"
Abstract: 

A simple autonomous three-dimensional system is introduced that demonstrates quasiperiodic self-oscillations and has as attractor a two-dimensional torus. The computing illustrations of quasiperiodic dynamics are presented: phase portraits, Fourie spectrums, graphics of Lyapunov exponents. The existing of Arnold tongues on the parametric plane and transition from quasiperiodic dynamics to chaos through destruction of invariant curve in the Poincare section are shown.

Reference: 
  1. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization: A fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 493 p.
  2. Landa PS. Self-Oscillation in Systems with Finite Number of Degress of Freedom. Moscow: Nauka; 1980. 360 p. (in Russian).
  3. Landa PS. Nonlinear Oscillations and Waves. Moscow: Nauka; 1997. 495 p. (in Russian). 
  4. Blekhman II. Synchronization of dynamic systems. Moscow: Nauka; 1971. 896 p. (in Russian). 
  5. Glazier JA, Libchaber A. Quasi-Periodicity and Dynamical Systems: An Experimentalist’s view. IEEE Trans. Circuits and Systems. 1988;35(7):790–809. DOI: 10.1109/31.1826.
  6. Izhikevich EM. Neural excitability, spiking and bursting. International J. of Bifurcation and Chaos. 2000;10(6):1171–1266. DOI: 10.1142/S0218127400000840.
  7. Straube R, Flockerzi D, Muller SC, Hauser M.J.B. Origin of bursting pH oscillations in an enzyme model reaction system. Phys. Rev. E. 2005;72:066205. DOI: 10.1103/PhysRevE.72.066205.
  8. Shilnikov A, Kolomiets M. Methods of the qualitative theory for the Hindmarsh-Rose model: A case study - A tutorial. International Journal of Bifurcation and Chaos. 2008;18(8):2141–2168. DOI: 10.1142/S0218127408021634.
  9. Arnold VI. Mathematical Methods of Classical Mechanics. Moscow: URSS; 2003. 416 p. (in Russian).
  10. Landau LD. On the problem of turbulence. Dokl. Akad. Nauk SSSR. 1944;44(8):339–342 (in Russian). 
  11. Hopf E. A mathematical example displaying the features of turbulence. Communications on Pure and Applied Mathematics. 1948;1:303–322. DOI: 10.1002/cpa.3160010401.
  12. Ruelle D,  Takens F. On the Nature of Turbulence. In: Strange attractors. Ed. Sinaya YaG, Shilnikova LP. Moscow: Mir. 1981:117–151 (in Russian). 
  13. Tavakol R, Tworkovsky A. An example of quasiperiodic motion on T4. Phys. Lett. A. 1984;100(6):273–276.
  14. Anishchenko VS, Astakhov SV, Vadivasova TE, Strelkova GI. Synchronization of Regular, Chaotic, and Stochastic Oscillations. Moscow-Izhevsk: Institute of Computer Investigations; 2008. (in Russian).
  15. Anishchenko V, Nikolaev S, Kurths J. Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus. CHAOS. 2008;18:037123. DOI: 10.1063/1.2949929.
  16. Anishchenko VS, Nikolaev SM, Kurths J. Synchronization mechanisms of resonant limit cycle on two-dimensional torus. Nelin. Dinam. 2008;4(1):39–56 (in Russian).
  17. Anishchenko VS, Nikolaev SM. Synchronization of two-frequency quasi-periodic oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(2):69–86 (in Russian). DOI: 10.18500/0869-6632-2008-16-2-69-86.  
  18. Anishchenko V, Astakhov S, Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force. Europhysics Letters. 2009;86(3):30003. DOI: http://dx.doi.org/10.1209/0295-5075/86/30003.
  19. Anishchenko VS, Astakhov SV, Vadivasova TE, Feoktistov AV. Numerical and experimental study of external synchronization of two-frequency oscillations. Nelin. Dinam. 2009;5(2):237–252.
  20. Anishchenko VS, Nikolaev SM, Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus. Phys. Rev. Е. 2007;76:046216. DOI: 10.1103/PhysRevE.76.046216.
  21. Anishchenko V, Nikolaev S, Kurths J. Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions. Phys. Rev. E. 2006;73:056202. DOI: 10.1103/PhysRevE.73.056202.
  22. Anishchenko VS, Nikolaev SM. Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Tech. Phys. Lett. 2005;31:853–855. DOI: 10.1134/1.2121837.
  23. Matsumoto T, Chua L, Tokunaga R. Chaos via torus breakdown. IEEE Transactions on Circuits and Systems. 1987;34(3):240–253. DOI: 10.1109/TCS.1987.1086135.
  24. Egorov EN, Koronovskii AA, Khramov AE. The structure of attraction basins for attractors of a torus oscillator. Journal of Communications Technology and Electronics. 2004;49(6):676–681.
  25. Nishiuchi Y, Ueta T, Kawakami H. Stable torus and its bifurcation phenomena in a simple three-dimensional autonomous circuit. Chaos, Solitons & Fractals. 2006;27(4):941–951. DOI: 10.1016/j.chaos.2005.04.092.
  26. Zhusubaliyev ZhT, Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, New Jersy, London, Singapore, Hong-Kong; 2003. 372 p.
  27. Genesio R, Ghilardi C. On the onset of quasi-periodic solutions in third-order nonlinear dynamical systems. Int. J. of Bifurcation and Chaos. 2005;15(10):3165–3180. DOI: https://doi.org/10.1142/S0218127405014064.
  28. Wu Wen-Juan WJ, Chen ZQ, Yuan ZZ. Analysis of two-torus in a new four-dimensional autonomous system. Chinese Physics B. 2008;17:1674.
  29. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. 2nd ed. Moscow: Fizmatlit; 2002. 292 p. (in Russian).
  30. Kuznetsov SP. Dynamical Chaos: Course of Lectures. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
  31. Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Meccanica. 1980;15:9–20. DOI: 10.1007/BF02128236.
  32. Anishchenko VS. Complex oscillations in simple systems. Moscow: Nauka; 1990. 312 p. (in Russian).
Received: 
03.07.2009
Accepted: 
16.11.2009
Published: 
30.04.2010
Short text (in English):
(downloads: 48)