ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Gordleeva S. Y., Matrosov V. V., Kazantsev V. B. Calcium oscillations in astrocytes. Part 1 Astrocyte as generator of calcium oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 3, pp. 29-39. DOI: 10.18500/0869-6632-2012-20-3-29-39

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 306)
Article type: 

Calcium oscillations in astrocytes. Part 1 Astrocyte as generator of calcium oscillations

Gordleeva Susanna Yurevna, Lobachevsky State University of Nizhny Novgorod
Matrosov Valerij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Kazantsev Viktor Borisovich, Institute of Applied Physics of the Russian Academy of Sciences

Bifurcation mechanisms of oscillatory dynamics in a biophysical model of chemically excitable brain cells (astrocytes) were analyzed. In contrast to neuronal oscillators widely studied in nonlinear dynamics the astrocytes do not possess electrical excitability but capable to generate chemical oscillations which modulate neuronal signaling. Astrocyte dynamics is described by third-order system of ordinary differential equations derived from biophysical kinetics. We investigated bifurcation mechanisms of calcium oscillations in a single cell and stimulus-evoked dynamics of astrocytes under external pulse stimulation modeling neuron-astrocyte interaction.

  1. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical principles in neuroscience. Reviews of Modern Physics. 2006;78(4):1213–1265. DOI: 10.1103/RevModPhys.78.1213.
  2. Nekorkin VI. Nonlinear oscillations and waves in neurodynamics. Phys. Usp. 2008;51(3):295–304.
  3. Verkhratsky A, Butt A. Glial Neurobiology. Wiley; 2007.
  4. Nadkarni S, Jung P. Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 2003;91:268101. DOI: 10.1103/PhysRevLett.91.268101.
  5. Volman V, Ben-Jacob E, Levine H. The astrocyte as a gatekeeper of synaptic information transfer. Neural Comp. 2007;19(2):303–326. DOI: 10.1162/neco.2007.19.2.303.
  6. De Pitta M, Volman V, Berry H, Ben-Jacob E. A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput. Biol. 2011;7(12):e1002293. DOI: 10.1371/journal.pcbi.1002293.
  7. De Young GW, Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. USA. 1992;89(20):9895–9899. DOI: 10.1073/pnas.89.20.9895.
  8. Li Y, Rinzel J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: A Hodgkin–Huxley-like formalism. J. Theor. Biol. 1994;166(4):461–473. DOI: 10.1006/jtbi.1994.1041.
  9. Ullah G, Jung P, Cornell-Bell AH. Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium. 2006;39(3):197–208. DOI: 10.1016/j.ceca.2005.10.009.
  10. Schuster S, Marhl M, Hofer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 2002;269(5):1333–1355. DOI: 10.1046/j.0014-2956.2001.02720.x.
  11. Matrosov VV, Kazantsev VB. Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos. 2011;21(2):023103. DOI: 10.1063/1.3574031.
  12. Kazantsev VB. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes. Phys. Rev. E. 2009;79(1):010901(R). DOI: 10.1103/PhysRevE.79.010901.
  13. Cuthbertson KSR, Chay TR. Modeling receptor-controlled intracellular calcium oscillators. Cell Calcium. 1991;12:97–109. DOI: 10.1016/0143-4160(91)90012-4.
  14. Izhikevich E.M. Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos. 2000;10(6):1171–1266. DOI: 10.1142/S0218127400000840.
Short text (in English):
(downloads: 93)