ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Novikov E. V., Savin A. V. Changes of the parameter plane of driven auto-oscillatory system caused by delayed modulation of the parameter. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 91-97. DOI: 10.18500/0869-6632-2011-19-5-91-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 109)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Changes of the parameter plane of driven auto-oscillatory system caused by delayed modulation of the parameter

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Novikov Evgenij Vjacheslavovich, Saratov State University
Savin Aleksej Vladimirovich, Saratov State University
Abstract: 

The driven auto-oscillatory system with the delayed modulation of driving amplitude was investigated. It was shown that synchronous regime destructs in different ways at small and large modulation amplitudes. The changes in the «driving amplitude–driving frequency» plane were revealed.

Reference: 
  1. Pyragas K. Continuous control of chaos by self–controlling feedback. Phys. Rev. A. 1992;170(6):421–428. DOI: 10.1016/0375-9601(92)90745-8.
  2. Barrero E, Grebogi C. Multiparameter control of chaos. Phys. Rev. E. 1993;52(4):3553–3557. DOI: 10.1103/PhysRevE.52.3553.
  3. Vieira MS, Lichtenberg AJ. Controlling chaos using nonlinear feedback with delay. Phys. Rev. E. 1996;54(2):1200–1207. DOI: 10.1103/PhysRevE.54.1200.
  4. Buchner T, Zebrowski JJ. Logistic map with a delayed feedback: Stability of a discrete time–delay control of chaos. Phys. Rev. E. 2000;63(1):016210. DOI: 10.1103/physreve.63.016210.
  5. Balanov AG, Janson NB, Scholl E. Delayed feedback control of chaos: Bifurcation analysis. Phys. Rev. E. 2005;71(1):016222. DOI: 10.1103/PhysRevE.71.016222.
  6. Kuznetsov AP, Novikov EV, Savin AV. Period doubling maps with driving parameter modulated by delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(4):33–48 (in Russian). DOI: 10.18500/0869-6632-2008-16-4-33-64.
  7. Kuznetsov AP, Tyuryukina LV. Synchronization of a self-oscillating van der Pol – Duffing system by short pulses. Izvestiya VUZ. Applied Nonlinear Dynamics. 2004;12(5):16–31 (in Russian).
  8. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2006. 292 p. (in Russian)
  9. Kuznetsov YA. Elements of Applied Bifurcation Theory. Springer-Verlag; 1998. 593 p. DOI: 10.1007/978-1-4757-3978-7.
Received: 
23.06.2011
Accepted: 
04.10.2011
Published: 
30.12.2011
Short text (in English):
(downloads: 36)