ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Hramov A. E., Maksimenko V. A., Frolov N. S., Kurkin S. A., Grubov V. V., Badarin A. A., Andreev A. В., Kazantsev V. B., Gordleeva S. Y., Pitsik E. N., Pisarchik A. N. Human brain state monitoring in perceptual decision-making tasks. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 4, pp. 603-634. DOI: 10.18500/0869-6632-2021-29-4-603-634

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 791)
Article type: 
57.024; 53.047

Human brain state monitoring in perceptual decision-making tasks

Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Maksimenko Vladimir Aleksandrovich, Immanuel Kant Baltic Federal University
Frolov Nikita Sergeevich, Innopolis University
Kurkin Semen Andreevich, Innopolis University
Grubov Vadim Valerevich, Immanuel Kant Baltic Federal University
Badarin Artem Aleksandrovich, Immanuel Kant Baltic Federal University
Kazantsev Viktor Borisovich, Institute of Applied Physics of the Russian Academy of Sciences
Gordleeva Susanna Yurevna, Lobachevsky State University of Nizhny Novgorod
Pitsik Elena N, Innopolis University
Pisarchik Alexander Nikolaevich, Universidad Politécnica de Madrid, Centre for Biomedical Technology

The purpose of this review is to observe the current state of research on sensorimotor integration in the human brain during visual perception and subsequent decision-making under conditions of ambiguous information. Methods. This review examines the approaches of time-frequency wavelet analysis for brain activity when performing perceptual tasks, as well as the possibility of using such methods in the tasks of constructing brain – computer interfaces. Results. Electroencephalographic markers of increased attention during the perception of visual stimuli have been identified. Based on their we created brain – computer interfaces, which can monitor and control attention using biological feedback. Conclusion. We shown that the speed and correctness of our decisions depends on the quality of sensory evidence. Ambiguous sensory information requires more time to process, more attention and increases the probability of error. The use of neurointerfaces has shown that the brain’s resource is limited, and it is not maintained at a constant level – the time intervals of heightened attention alternate with the recovery period. 

The work was carried out with the support of the Presidential Program for the Scientific Schools support of the Russian Federation, grant NSH-2594.2020.2
  1. American Association for the Advancement of Science. Human performance in space: Advancing astronautics research in China. Science. 2014;345(6203):1522. DOI: 10.1126/science.345.6203.1522-d.
  2. Borghini G, Arico P, Di Flumeri G, Cartocci G, Colosimo A, Bonelli S, Golfetti A, Imbert J, Granger G, Benhacene R, Pozzi S, Babiloni F. EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers. Scientific Reports. 2017;7(1):547. DOI: 10.1038/s41598-017-00633-7.
  3. Di Flumeri G, De Crescenzio F, Berberian B, Ohneiser O, Kramer J, Arico P, Borghini G, Babiloni F, Bagassi S, Piastra S. Brain–computer interface-based adaptive automation to prevent out-of-the loop phenomenon in air traffic controllers dealing with highly automated systems. Frontiers in Human Neuroscience. 2019;13:296. DOI: 10.3389/fnhum.2019.00296.
  4. Hramov A, Maksimenko V, Pisarchik A. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports (accepted). 2021. DOI: 10.1016/j.physrep.2021.03.002.
  5. Heekeren H, Marrett S, Bandettini P, Ungerleider L. A general mechanism for perceptual decision making in the human brain. Nature. 2004;431(7010):859–862. DOI: 10.1038/nature02966.
  6. Davison E, Schlesinger K, Bassett D, Lynall M, Miller M, Grafton S, Carlson J. Brain network adaptability across task states. PLOS Computational Biology. 2015;11(1):e1004029. DOI: 10.1371/journal.pcbi.1004029.
  7. Parks E, Madden D. Brain connectivity and visual attention. Brain Connectivity. 2013;3(4):317–338. DOI: 10.1089/brain.2012.0139.
  8. Shine J, Poldrack R. Principles of dynamic network reconfiguration across diverse brain states. NeuroImage. 2018;180:396–405. DOI: 10.1016/j.neuroimage.2017.08.010.
  9. Smith S. Linking cognition to brain connectivity. Nature Neuroscience. 2016;19(1):7–9. DOI: 10.1038/nn.4206.
  10. Hramov A, Frolov N, Maksimenko V, Kurkin S, Kazantsev V, Pisarchik A. Functional networks of the brain: from connectivity restoration to dynamic integration. Physics-Uspekhi (accepted). 2021. DOI: 10.3367/UFNr.2020.06.038807.
  11. van den Heuvel MP, Pol HEH. Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology. 2010;20(8):519–534. DOI: 10.1016/j.euroneuro.2010.03.008.
  12. Xu J, Potenza M, Calhoun V. Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Frontiers in Neuroscience. 2013;7:154. DOI: 10.3389/fnins.2013.00154.
  13. Rosenberg M, Finn E, Scheinost D, Papademetris X, Shen X, Constable R, Chun M. A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience. 2016;19(1):165–171. DOI: 10.1038/nn.4179.
  14. Li J, Lim J, Chen Y, Wong K, Thakor N, Bezerianos A, Sun Y. Mid-task break improves global integration of functional connectivity in lower alpha band. Frontiers in Human Neuroscience. 2016;10:304. DOI: 10.3389/fnhum.2016.00304.
  15. Finc K, Bonna K, Lewandowska M, Wolak T, Nikadon J, Dreszer J, Duch W, Kuhn S. Transition of the functional brain network related to increasing cognitive demands. Human Brain Mapping. 2017;38(7):3659–3674. DOI: 10.1002/hbm.23621.
  16. Fries P. Rhythms for cognition: Communication through coherence. Neuron. 2015;88(1):220–235. DOI: 10.1016/j.neuron.2015.09.034.
  17. Lisman J, Jensen O. The theta-gamma neural code. Neuron. 2013;77(6):1002–1016. DOI: 10.1016/j.neuron.2013.03.007.
  18. Canolty R, Edwards E, Dalal S, Soltani M, Nagarajan S, Kirsch H, Berger M, Barbaro N, Knight R. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–1628. DOI: 10.1126/science.1128115.
  19. Maksimenko V, Luttjohann A, Makarov V, Goremyko M, Koronovskii A, Nedaivozov V, Runnova A, van Luijtelaar G, Hramov A, Boccaletti S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E. 2017;96(1):012316. DOI: 10.1103/PhysRevE.96.012316.
  20. Michalareas G, Vezoli J, van Pelt S, Schoffelen J, Kennedy H, Fries P. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron. 2016;89(2):384–397. DOI: 10.1016/j.neuron.2015.12.018.
  21. Buffalo E, Fries P, Landman R, Buschman T, Desimone R. Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(27):11262–11267. DOI: 10.1073/pnas.1011284108.
  22. Frolov N, Maksimenko V, Hramov A. Revealing a multiplex brain network through the analysis of recurrences. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020;30(12):121108. DOI: 10.1063/5.0028053.
  23. Pisarchik A, Maksimenko V, Andreev A, Frolov N, Makarov V, Zhuravlev M, Runnova A, Hramov A. Coherent resonance in the distributed cortical network during sensory information processing. Scientific Reports. 2019;9(1):18325. DOI: 10.1038/s41598-019-54577-1.
  24. Frolov N, Maksimenko V, Khramova M, Pisarchik A, Hramov A. Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing. The European Physical Journal Special Topics. 2019;228(11):2381–2389. DOI: 10.1140/epjst/e2019-900077-7.
  25. Maksimenko V, Runnova A, Frolov N, Makarov V, Nedaivozov V, Koronovskii A, Pisarchik A, Hramov A. Multiscale neural connectivity during human sensory processing in the brain. Phys. Rev. E. 2018;97(5):052405. DOI: 10.1103/PhysRevE.97.052405.
  26. Maksimenko V, Frolov N, Hramov A, Runnova A, Grubov V, Kurths J, Pisarchik A. Neural interactions in a spatially-distributed cortical network during perceptual decision-making. Frontiers in Behavioral Neuroscience. 2019;13:220. DOI: 10.3389/fnbeh.2019.00220.
  27. Helfrich R, Huang M, Wilson G, Knight R. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(35):9457–9462. DOI: 10.1073/pnas.1705965114.
  28. Sellers K, Yu C, Zhou Z, Stitt I, Li Y, Radtke-Schuller S, Alagapan S, Frohlich F. Oscillatory dynamics in the frontoparietal attention network during sustained attention in the ferret. Cell Reports. 2016;16(11):2864–2874. DOI: 10.1016/j.celrep.2016.08.055.
  29. Scolari M, Seidl-Rathkopf K, Kastner S. Functions of the human frontoparietal attention network: Evidence from neuroimaging. Current Opinion in Behavioral Sciences. 2015;1:32– 39. DOI: 10.1016/j.cobeha.2014.08.003.
  30. Clayton M, Yeung N, Kadosh R. The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences. 2015;19(4):188–195. DOI: 10.1016/j.tics.2015.02.004.
  31. Miodrag N, Hodapp R. Chronic stress and its implications on health among families of children with intellectual and developmental disabilities (I/DD). In: International Review of Research in Developmental Disabilities. vol. 41. Elsevier; 2011. p. 127–161. DOI: 10.1016/B978-0-12-386495-6.00004-7.
  32. Kornmeier J, Pfaffle M, Bach M. Necker cube: Stimulus-related (low-level) and percept-related (high-level) EEG signatures early in occipital cortex. Journal of Vision. 2011;11(9):12. DOI: 10.1167/11.9.12.
  33. Maksimenko V, Runnova A, Zhuravlev M, Makarov V, Nedayvozov V, Grubov V, Pchelintceva S, Hramov A, Pisarchik A. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface. PLOS One. 2017;12(12):e0188700. DOI: 10.1371/journal.pone.0188700.
  34. Hramov A, Frolov N, Maksimenko V, Makarov V, Koronovskii A, Garcia-Prieto J, Anton-Toro L, Maestu F, Pisarchik A. Artificial neural network detects human uncertainty. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018;28(3):033607. DOI: 10.1063/1.5002892.
  35. Denison R, Adler W, Carrasco M, Ma W. Humans incorporate attention-dependent uncertainty into perceptual decisions and confidence. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(43):11090–11095. DOI: 10.1073/pnas.1717720115.
  36. Weisz N, Wuhle A, Monittola G, Demarchi G, Frey J, Popov T, Braun C. Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):E417–E425. DOI: 10.1073/pnas.1317267111.
  37. Runnova A, Hramov A, Grubov V, Koronovskii A, Kurovskaya M, Pisarchik A. Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images. Chaos, Solitons & Fractals. 2016;93:201–206. DOI: 10.1016/j.chaos.2016.11.001.
  38. Hramov A, Maksimenko V, Pchelintseva S, Runnova A, Grubov V, Musatov V, Zhuravlev M, Koronovskii A, Pisarchik A. Classifying the perceptual interpretations of a bistable image using EEG and artificial neural networks. Frontiers in Neuroscience. 2017;11:674. DOI: 10.3389/fnins.2017.00674.
  39. Chholak P, Kurkin S, Hramov A, Pisarchik A. Event-related coherence in visual cortex and brain noise: An MEG study. Applied Sciences. 2021;11(1):375. DOI: 10.3390/app11010375.
  40. Hramov A, Kurovskaya M, Runnova A, Zhuravlev M, Grubov V, Koronovskii A, Pavlov A, Pisarchik A. Intermittent behavior in the brain neuronal network in the perception of ambiguous images. In: Proc. SPIE. Dynamics and Fluctuations in Biomedical Photonics XIV. vol. 10063. SPIE BiOS; 2017. p. 1006314. DOI: 10.1117/12.2249888.
  41. Chholak P, Maksimenko V, Hramov A, Pisarchik A. Voluntary and involuntary attention in bistable visual perception: A MEG study. Frontiers in Human Neuroscience. 2020;14:597895. DOI: 10.3389/fnhum.2020.597895.
  42. Chholak P, Hramov A, Pisarchik A. An advanced perception model combining brain noise and adaptation. Nonlinear Dynamics. 2020;100(4):3695–3709. DOI: 10.1007/s11071-020-05741-0.
  43. Hramov A, Maksimenko V, Koronovskii A, Runnova A, Zhuravlev M, Pisarchik A, Kurths J. Percept-related EEG classification using machine learning approach and features of functional brain connectivity. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019;29(9):093110. DOI: 10.1063/1.5113844.
  44. Maksimenko V, Kuc A, Frolov N, Khramova M, Pisarchik A, Hramov A. Dissociating cognitive processes during ambiguous information processing in perceptual decision-making. Frontiers in Behavioral Neuroscience. 2020;14:95. DOI: 10.3389/fnbeh.2020.00095.
  45. Maksimenko V, Kuc A, Frolov N, Kurkin S, Hramov A. Effect of repetition on the behavioral and neuronal responses to ambiguous Necker cube images. Scientific Reports. 2021;11(1):3454. DOI: 10.1038/s41598-021-82688-1.
  46. Sehatpour P, Molholm S, Schwartz T, Mahoney J, Mehta A, Javitt D, Stanton P, Foxe J. A human intracranial study of long-range oscillatory coherence across a frontal–occipital–hippocampal brain network during visual object processing. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(11):4399–4404. DOI: 10.1073/pnas.0708418105.
  47. Chand G, Dhamala M. The salience network dynamics in perceptual decision-making. NeuroImage. 2016;134:85–93. DOI: 10.1016/j.neuroimage.2016.04.018.
  48. Chand G, Dhamala M. Interactions between the anterior cingulate-insula network and the fronto-parietal network during perceptual decision-making. NeuroImage. 2017;152:381–389. DOI: 10.1016/j.neuroimage.2017.03.014.
  49. Siegel M, Engel A, Donner T. Cortical network dynamics of perceptual decision-making in the human brain. Frontiers in Human Neuroscience. 2011;5:21. DOI: 10.3389/fnhum.2011.00021.
  50. Anderson K, Ding M. Attentional modulation of the somatosensory mu rhythm. Neuroscience. 2011;180:165–180. DOI: 10.1016/j.neuroscience.2011.02.004.
  51. Bauer M, Kennett S, Driver J. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices. Journal of Neurophysiology. 2012;107(9):2342–2351. DOI: 10.1152/jn.00973.2011.
  52. Gola M, Magnuski M, Szumska I, Wrobel A. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. International Journal of Psychophysiology. 2013;89(3):334–341. DOI: 10.1016/j.ijpsycho.2013.05.007.
  53. van Dijk H, Schoffelen J, Oostenveld R, Jensen O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience. 2008;28(8):1816–1823. DOI: 10.1523/JNEUROSCI.1853-07.2008.
  54. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann C, Bauml K. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage. 2007;37(4):1465– 1473. DOI: 10.1016/j.neuroimage.2007.07.011.
  55. Scocchia L, Valsecchi M, Triesch J. Top-down influences on ambiguous perception: the role of stable and transient states of the observer. Frontiers in Human Neuroscience. 2014;8:979. DOI: 10.3389/fnhum.2014.00979.
  56. Park G, Vasey M, Kim G, Hu D, Thayer J. Trait anxiety is associated with negative interpretations when resolving valence ambiguity of surprised faces. Frontiers in Psychology. 2016;7:1164. DOI: 10.3389/fpsyg.2016.01164.
  57. Hramov A, Koronovskii A, Makarov V, Pavlov A, Sitnikova E. Wavelets in Neuroscience. Springer Series in Synergetics. Springer-Verlag Berlin Heidelberg; 2015. P. 318. DOI: 10.1007/978-3-662-43850-3.
  58. Lopes da Silva F. EEG and MEG: Relevance to neuroscience. Neuron. 2013;80(5):1112–1128. DOI: 10.1016/j.neuron.2013.10.017.
  59. Kayser C, Ince R, Panzeri S. Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLOS Computational Biology. 2012;8(10):e1002717. DOI: 10.1371/journal.pcbi.1002717.
  60. von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology. 2000;38(3):301–313. DOI: 10.1016/S0167-8760(00)00172-0.
  61. Pfurtscheller G, Neuper C, Mohl W. Event-related desynchronization (ERD) during visual processing. International Journal of Psychophysiology. 1994;16(2–3):147–153. DOI: 10.1016/0167-8760(89)90041-X.
  62. Engel A, Fries P. Beta-band oscillations – signalling the status quo? Current Opinion in Neurobiology. 2010;20(2):156–165. DOI: 10.1016/j.conb.2010.02.015.
  63. Okazaki M, Kaneko Y, Yumoto M, Arima K. Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities. Neuroscience Research. 2008;61(3):319–328. DOI: 10.1016/j.neures.2008.03.010.
  64. Buschman T, Miller E. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315(5820):1860–1862. DOI: 10.1126/science.1138071.
  65. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods. 2007;164(1):177–190. DOI: 10.1016/j.jneumeth.2007.03.024.
  66. Lee T, D’Esposito M. The dynamic nature of top-down signals originating from prefrontal cortex: A combined fMRI–TMS study. Journal of Neuroscience. 2012;32(44):15458–15466. DOI: 10.1523/JNEUROSCI.0627-12.2012.
  67. Cohen M, van Gaal S. Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex. 2013;23(5):1061–1072. DOI: 10.1093/cercor/bhs069.
  68. de Borst A, Sack A, Jansma B, Esposito F, de Martino F, Valente G, Roebroeck A, di Salle F, Goebel R, Formisano E. Integration of “what” and “where” in frontal cortex during visual imagery of scenes. NeuroImage. 2012;60(1):47–58. DOI: 10.1016/j.neuroimage.2011.12.005.
  69. Mathes B, Khalaidovski K, Schmiedt-Fehr C, Basar-Eroglu C. Frontal theta activity is pronounced during illusory perception. International Journal of Psychophysiology. 2014;94(3):445–454. DOI: 10.1016/j.ijpsycho.2014.08.585.
  70. Yokota Y, Minami T, Naruse Y, Nakauchi S. Neural processes in pseudo perceptual rivalry: An ERP and time–frequency approach. Neuroscience. 2014;271:35–44. DOI: 10.1016/j.neuroscience.2014.04.015.
  71. Spitzer B, Haegens S. Beyond the status quo: A role for beta oscillations in endogenous content (re)activation. eNeuro. 2017;4(4):ENEURO.0170–17.2017. DOI: 10.1523/ENEURO.0170-17.2017.
  72. Maksimenko V, Runnova A, Zhuravlev M, Makarov V, Nedayvozov V, Grubov V, Pchelintceva S, Hramov A, Pisarchik A. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface. PLOS One. 2017;12(12):e0188700. DOI: 10.1371/journal.pone.0188700.
  73. Beer A, Roder B. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. European Journal of Neuroscience. 2005;21(4):1116– 1130. DOI: 10.1111/j.1460-9568.2005.03927.x.
  74. Maksimenko V, Runnova A, Zhuravlev M, Protasov P, Kulanin R, Khramova M, Pisarchik A, Hramov A. Human personality reflects spatio-temporal and time-frequency EEG structure. PLOS One. 2018;13(9):e0197642. DOI: 10.1371/journal.pone.0197642.
  75. Maksimenko V, Pavlov A, Runnova A, Nedaivozov V, Grubov V, Koronovskii A, Pchelintseva S, Pitsik E, Pisarchik A, Hramov A. Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dynamics. 2018;91(4):2803–2817. DOI: 10.1007/s11071-018-4047-y.
  76. Maksimenko V, Hramov A, Frolov N, Luttjohann A, Nedaivozov V, Grubov V, Runnova A, Makarov V, Kurths J, Pisarchik A. Increasing human performance by sharing cognitive load using brain-to-brain interface. Frontiers in Neuroscience. 2018;12:949. DOI: 10.3389/fnins.2018.00949.