ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Petrov V. S., Osipov G. V. Influence of passive elements on the synchronization of oscillatory ensembles. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 46-59. DOI: 10.18500/0869-6632-2010-18-3-46-59

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 127)
Language: 
Russian
Article type: 
Article
UDC: 
621.391.01

Influence of passive elements on the synchronization of oscillatory ensembles

Autors: 
Petrov Valentin Sergeevich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

This paper deals with the influence of the passive elements on the synchronization in the ensembles of coupled non-identical Bonhoeffer–van der Pol oscillators. With a help of numerical experiment it was demonstrated that the introduction of passive elements may lead to both increase and decrease of global synchronization threshold in the system. These results were confirmed analytically using piecewise linear approximation of the Bonhoeffer–van der Pol model. The results obtained for the ensemble of three coupled elements are generalized to the case of two dimensional lattices of non-identical oscillators. 

Reference: 
  1. Bub G, Shrier A, Glass L. Spiral wave generation in heterogeneous excitable media. Phys. Rev. Lett. 2002;88(5):058101. DOI: 10.1103/PhysRevLett.88.058101.
  2. Bub G, Shrier A, Glass L. Global organization of dynamics in oscillatory heterogeneous excitable media. Phys. Rev. Lett. 2005;94(2):028105. DOI: 10.1103/PhysRevLett.94.028105.
  3. Blasius B, Tonjes R. Quasiregular concentric waves in heterogeneous lattices of coupled oscillators. Phys. Rev. Lett. 2005;95:084101. DOI: 10.1103/PhysRevLett.95.084101.
  4. Kheowan OU, Mihaliuk E, Blasius B, Sendina-Nadal I, Showalter K. Wave mediated synchronization of nonuniform oscillatory media. Phys. Rev. Lett. 2007;98:074101. DOI: 10.1103/PhysRevLett.98.074101.
  5. Hwang S, Yea K, Lee KJ. Regular and alternant spiral waves of contractile motion on rat ventricle cell cultures. Phys. Rev. Lett. 2004;92:198103. DOI: 10.1103/PhysRevLett.92.198103
  6. Ten Tusscher KHWJ, Panfilov AV. Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace. 2007;9:38–45. DOI: 10.1093/europace/eum206.
  7. Pikovsky AS, Rosenblum MG, Kurts Yu. Synchronization. A fundamental nonlinear phenomenon.Moscow: Tehnosphera; 2003. 496 p. (in Russian).
  8. Pazo D, Montbrio E. Universal behavior in populations composed of excitable and self-oscillatory elements. Phys. Rev. E. 2006;73(5):055202(R). DOI: 10.1103/PhysRevE.73.055202.
  9. Bonhoeffer KF. Modelle der Nervenerregung. Naturwissenschaften. 1953;40:301–311. DOI: 10.1007/BF00632438.
  10. Kryukov AK, Petrov VS, Averyanova LS, Osipov GV, Chen W, Drugova O, Chan CK. Synchronization phenomena in mixed media of passive, excitable and oscillatory cells. Chaos. 2008;18:037129. DOI: 10.1063/1.2956985.
Received: 
10.11.2009
Accepted: 
25.02.2010
Published: 
30.06.2010
Short text (in English):
(downloads: 80)