ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Mukhin R. R. Legacy of Alexander Mikhailovich Lyapunov and nonlinear dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, iss. 4, pp. 95-120. DOI: 10.18500/0869-6632-2018-26-4-95-120

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 683)
Language: 
Russian
Article type: 
Personalia
UDC: 
51(09)

Legacy of Alexander Mikhailovich Lyapunov and nonlinear dynamics

Autors: 
Mukhin Ravil Rafkatovich, Stary Oskol technological Institute. A. A. Ugarov (branch) of Federal state educational institution of higher professional education "national research technological University "MISIS" (STI nust Misa)
Abstract: 

Aim. The aim of the work is to study the scientific heritage of A.M. Lyapunov from the standpoint of nonlinear physics. Fundamental importance Lyapunov’s contribution is determined not only by the methods he created, which became the basis of the mathematical apparatus in the study of nonlinear phenomena, but his ideas and concepts introduced by him contributed to the formation of concepts and principles of nonlinear dynamics. Method. The study is based on an analysis of Lyapunov’s original works with the involvement of existing literature on his scientific heritage. Results. Lyapunov’s creativity is closely intertwined with the works of A. Poincare, among many other fundamental achievements of which the qualitative theory that formed the conceptual basis of nonlinear dynamics is of particular importance. Lyapunov was the closest successor to Poincare in the field of qualitative theory. Qualitative in its essence is the Lyapunov stability theory, one of the greatest achievements of mathematics of the XIX century. From these positions Lyapunov approaches the very formulation of the stability problem, singling out the unperturbed and disturbed motion. He developed methods for solving stability problems by proposing and rigorously justifying specific algorithms. One of the most difficult problems of mathematics and mechanics for several centuries is the problem of the equilibrium figures of a rotating liquid. It has numerous applications, stimulated the emergence of new ideas and whole research directions. To solving the problem of the figures of equilibrium, Lyapunov together with Poincare made a decisive contribution. Lyapunov studied in detail and quite rigorously a series of new equilibrium figures, their bifurcations and stability. At the same time he created new analytical methods of research, in particular, the works of Lyapunov and Poincare gave a powerful impetus to the development of the theory of non-linear integral equations. An important general scientific value is the further development of Lyapunov’s results. The Lyapunov exponents have become fundamental for nonlinear dynamics. Their use is based on the multiplicative ergodic theorem. The Lyapunov exponents are related to another most important quantity, also a measure of randomness and instability – the Kolmogorov–Sinai entropy. Discussion. The concepts introduced by Lyapunov and the methods created have an enduring significance, they have not only formed a mathematical apparatus, but to a great extent form the concepts and principles of nonlinear dynamics.    

Reference: 
  1. Steklov V.A. Alexandr Mikhailovich Lyapunov. In: Lyapunov A.M. Works on the Theory of Potential. M.; L.: GITTL, 1949, pp. 9–32 (in Russian).
  2. Smirnov V.I. Alexandr Mikhailovich Lyapunov. In: Academician A.M. Lyapunov. Coll. of works. T. I. Moscow: Publishing House of the Academy of Sciences of the USSR, 1954, pp. 5–15 (in Russian).
  3. Tsykalo A.L. Alexandr Mikhailovich Lyapunov. Moscow: Nauka, 1988, 244 p. (in Russian).
  4. Smirnov V.I. Essay on the scientific works of A.M. Lyapunov. In: Lyapunov A.M. Select. Works. Moscow: Publishing House of the USSR Academy of Sciences, 1948, pp. 341–450 (in Russian).
  5. Shibanov A.S. Alexandr Mikhailovich Lyapunov. Moscow: Mol. Gvardia, 1985, 336 p. (in Russian).
  6. Demidov S.S., Kozlov V.V. To the 150th anniversary of Alexandr Mikhailovich Lyapunov. In: Lyapunov A.M. Select. Works: Works on the Theory of Stability. Moscow: Nauka, 2007, pp. 7–26 (in Russian).
  7. Leine R.I. The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn., 2010, vol. 59, pp. 173–182.
  8. Mawhin J. Nonlinear oscillations: one hundred years after Liapunov and Poincare. Zeitschrift fur Angenwandte Mathematik und Mechanik, 1993, B. 73, s. 54–62.
  9. Bountis T. Stability of motion: from Lypunov to the dynamics of N-degree of freedom Hamiltonian system. Nonlinear phenomena in complex systems, 2006, vol. 9, no. 3. pp. 209–239.
  10. Grattan-Guinnes I. The Norton History of the Mathematical Sciences. N.Y.: W.W. Norton and Com., 1997. 832 p.
  11. Iurato G. The dawning of the theory of equilibrium figures. archive: 1409.1823.
  12. Jardetzky W.S. Theories of Figures of Celestial Bodies. N.Y.: Interscience Publishers, Inc., 1985, 208 p.
  13. Bylov B.F., Vinograd R.E., Grobman D.N., Nemytsky V.V. The Theory of Lyapunov Exponents and its Applications to Stability Problems. Moscow: Nauka, 1966, 576 p. (in Russian).
  14. Littleton R.A. The stability of rotating liquid masses of liquid. Cambridge: Cambridge Univ. Press, 1953. 171 p.
  15. Liechtenstein L. Gleichgewichtsfiguren Rotierender Flussigkeiten. Berlin: Verlag von J. Springer, 1933, 174 s.
  16. Mawhin J. Alexandr Mikhailovich Liapunov. The general problem of the stability of motion. In: Landmark writings in western mathematics, 1640–1940. Amsterdam: Elseiver, 2005, pp. 664–676.
  17. Mawhin J. The centennial legacy of Poincare and Liapunov in ordinary differential equations. Rendiconti Circolo Matematico di Palermo, 1994, Suppl. Ser. II, no. 34, pp. 9–46.
  18. Demidov S.S., Petrova S.S., Simonov N.N. Ordinary differential equations. In: Mathematics of XIX century. M.: Nauka, 1987, pp. 80–183 (in Russian).
  19. Aleksandr Mikhailovich Lyapunov. In: Russian Mathematicians in 20th Century. Ed. Ya. Sinai. N.Y.; L.: World Scientific, 2003, pp. 1–16.
  20. Analyse de ses travaux scientific, par H. Poincare. Acta Mathem. 1921, Vol. 38, pp. 36–135.
  21. Poincare H. Memoire sur les courbes definies par une equations differentielle. J. math. pures et appl., ser. 3, 1881, vol. 7, pp. 375–422; 1882, vol. 8, pp. 251– 296; ser. 4, 1885, vol. 1, pp. 167–244; 1886, vol. 2, pp. 151–217. 
  22. Poincare H. Sur les Courbes D efinies par des Equations Differentielles. Moscow: GITTL, 1947, 392 p. (in Russian).
  23. Aleksandrov P.S. Poincare and topology. Russian Mat. Survey, 1972, vol. 27, iss. 1, pp. 147–158 (in Russian).
  24. Lyapunov A.M. The general problem of the stability of motion. In: Lyapunov A.M. Select. Works: Works on the Stability of Motion. Moscow: Nauka, 2007, pp. 27–298 (in Russian).
  25. Moiseyev N.D. Essais on the Developement of the Theory of Stability. M.; L.: GITTL, 1949, 664 p. (in Russian).
  26. The History of Mechanics from the Late Eeighteenth to the Middle of the Twentieth Century. Moscow: Nauka, 1972, 417 p. (in Russian).
  27. The Method of Finding Curves of Lines with the Properties of a Maximum or a Minimum, or the Solution of an Isoperimetric Problem, Taken in the Broadest Sense of Leonard Euler, a Royal Professor and a Member of the Imperial Petersburg Academy of Sciences. M.; L.: GTTI, 1934, 603 р. (in Russian).
  28. Lagrange J.L. Sur le Principe des Vitesse Virtuelles. Oeuvres de Lagrange. T. VII. Paris: Gautier-Villars, 1877, pp. 317–321.
  29. Mecanique Analiytique, par J.L. Lagrange. T. Premiere, Paris, 1811, 422 p.
  30. Lejeune-Dirichlet P.G. Uber die Stabilit at des Gleichgewichts. CRELLE, J. Reine Angew. Math., 1846, B. 32, s. 85–88.
  31. Lejeune-Dirichlet P.G. On the Stability of Equilibrium. In: Lagrange J. Analytical Mechanics. T. 1. M.; L.: GITTL, 1950, pp. 537–540 (in Russian).
  32. Poincare H. Les Methodes Nouvelles de la Mecanique Celeste. Tome 3. Paris: Gau- thier-Villars, 1899. 410 p.
  33. Zhukovsky N.E. On the strength of motion. Scholar notes of Moscow University. Department of Physics and Mathematics. Sciences, 1882, vol. 4, pp. 10–21 (in Russian).
  34. Leonov G.A., Burkin I.M., Shepeljavyi A.I. Frequently methods in oscillation theory. Mathematics and its applications, vol. 357. Kluwer Academic, Dordrecht, 1996, 403 p.
  35. Thomson W., Treatise on Natural Philosophy. V. 1.1. Cambridge: Cambridge Univ. Press, 1879, 508 p.
  36. Routh E. A Treatise on the Stability of a Given State of Motion. London: Macmillan and Co., 1877, 129 p.
  37. Routh E. The Elementary part of a Treatise on the Dynamics of a System of Rigid Bodies. London: Macmillan and Co., 1860, 588 p.
  38. Mandelshtam L.I. Foreword to: Andronov AA, Witt AA, Khaikin S.E. Theory of oscillations. Moscow: Fizmatlit, 1959, pp. 9–13 (in Russian). 
  39. Newton I. Mathematical Principles of Natural Philosophy. N.Y.: Daniel Adee, 1846, 575 p.
  40. Tassul J.-L. The Theory of Rotating Stars. Princeton: Princeton Univ. Press, 1978, 524 p.
  41. Todhunter I. A History of the Mathematical Theories of Attraction and the Figure of the Earth from the Time of Newton to That of Laplace. L.: Macmillan and Co., 1873, Vol. I, XVIII + 474 p.
  42. Maclauren C. Traite des Fluxions. Edinburgh, 1742, 574 p.
  43. Jacobi C.G. Uber die Figur des Gleichgewichts. Ann. Phys. u. Chem. 1834, B. 33, S. 229–233; Gesammelte Werke. T. 2. Berlin: Verlag von G. Reimer, 1882–1891, S. 17–22.
  44. Lyapunov A.M. On the Form of Celestial Bodies. In: Academician A.M. Lyapunov. Coll. op. T. III. Moscow: Publishing House of the Academy of Sciences of the USSR, 1959, pp. 361–374 (in Russian).
  45. Lyapunov A.M. On the stability of ellipsoidal forms of equilibrium of a rotating fluid. In: Academician A.M. Lyapunov. Coll. op. T. III. Moscow: Publishing House of the Academy of Sciences of the USSR, 1959, pp. 5–113 (in Russian).
  46. Poincare H. Sur l’equilibre d’un masse fluide animee d’un mouvement de rotation. Acta Math. 1885. T. 7. P. 259–380; Oeuvres de Henri Poincare. T. VII. Paris: Gautier-Villars, 1952, pp. 40–140.
  47. Great Soviet Encyclopedia. T. 3. Moscow: Sov. Encyclopedia, 1970, 640 p. (in Russian).
  48. Poincare H. Sur la stabilite d’equilibre des figures piriformes affect ´ ees par une masse fluide animee en rotation. Proc. Roy. Soc. London, 1901, vol. 69, pp. 148–149.
  49. Darwin G. The stability of the pear-shaped figure of equilibrium of a rotating mass of liquid. Phyl. Transactions of the Royal Soc. of London, 1903, vol. 200, ser. A, pp. 251–314.
  50. Darwin G. Further consideration of the stability of the pear-shaped figure of equilibrium of a rotating mass of liquid. Phyl. Transactions of the Royal Soc. of London, 1908, vol. 208, ser. A, pp. 1–19.
  51. Liapounoff A.M. Sur les figures d’equilibre peu differentes des ellipsoids d’une masse liquide homogene dou ee d’un mouvement de rotation. I partie. Etude generale du probleme. St.-Pbg. Imprim. de l’Acad. des Sc. 1906. IV+225 p.
  52. Liapounoff A.M. Sur les figures d’equilibre peu differentes des ellipsoids d’une masse liquide homogene douee d’un mouvement de rotation. II partie. Figure d’equi-libre derivee des ellipsoides de Maclaurin. St.-Pbg. Imprim. de l’Acad. des Sc. 1909. IV+203 p.
  53. Liapounoff A.M. Sur les figures d’equilibre peu differentes des ellipsoids d’unemasse liquide homogene dou ee d’un mouvement de rotation. III partie. Figure d’equilibre derivee des ellipsoides de Jacobi. St.-Pbg. Imprim. de l’Acad. des Sc. 1912. IV+228 p.
  54. Liapounoff A.M. Sur les figures d’equilibre peu differentes des ellipsoids d’une masse liquide homogene douee d’un mouvement de rotation. IV partie. Nouvelles formules pour la recherches des figures d’equilibre. St.-Pbg. Imprim. de l’Acad. des Sc. 1914. IV+112 p.
  55. Jeans G. The Motion of Tidally-distorted Masses with special Reference of Cosmogony. Memories of the Royal Astron. Soc., 1917, vol. 62, pp. 1–48.
  56. Lyapunov A.M. On a problem of Chebyshev. Notes of Acad. Sciences in Phys. and Math. Dep. 1905. 8 ser. T. 17. no. 3. pp. 1–32; А.М. Lyapunov. Coll. works. T. 3. Moscow-Leningrad: Publishing House of the Academy of Sciences of the USSR, 1959, pp. 207–236 (in Russian).
  57. Mukhin R.R. Dynamic chaos: a difficult path of discovery. Izvestiya VUZ. Applied nonlinear dynamics, 2014, no. 4, pp. 43–54 (in Russian).
  58. Rayleigh J.W. The Theory of Sound. L.: MacMillan and Co. In two volumes: 1877, vol. I. 326 p.; 1878, vol. II. 315 p.
  59. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil: Entwicklung willkurlicher Funktionen nach Systemen vorgeschriebener. Math. Ann., 1907, B. 63, s. 433–476.
  60. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. II Teil: Auflosung der allgemeinen linearen Integralgleichung. Math. Ann., 1907, B. 64, s. 161–174.
  61. Khvedelidze B.V. The Lyapunov–Schmidt equation. Mat. Encyclopedia. T. 3. Moscow: Sov. Encyclopedia, 1982. S. 473–474 (in Russian).
  62. Yushkevich V.I. A.M. Lyapunov and the Academy of Sciences of the Institute of France. Histor.-mat. research, 1965, no. 16, pp. 375–388 (in Russian).
  63. Smirnov V.I., Yushkevich V.I. Correspondence А.М. Lyapunov with A. Poincare´ and P. Duhem. Histor.-mat. research, 1985, no. 29, pp. 265–284 (in Russian).
  64. Alexander Mikhailovich Lyapunov. Bibliography. Compiled by A.M. Lukomsky, ed. V.I. Smirnov. Moscow-Leningrad: Publishing House of the USSR Academy of Sciences, 1953, 268 p. (in Russian).
  65. Liapounoff A. Probleme generale de la stabilite du mouvement. Annales de la faculte des science de Toulouse, 2- serie, no. 9, 1907, pp. 203–474.
  66. Lyapunov A.M. Probleme Generale de la Stabilite du Mouvement. Princeton, N.Y.: Princeton Univ. Press, 1947, 375 p.
  67. Lyapunov A.M. The general problem of the stability of motion. Int. J. Control, 1992, vol. 55, no. 3, pp. 521–790.
  68. Perron O. Die ordnungszahlen linearer differential gleichungs systeme. Mathem. Zeitschr., 1930, B. 31, s. 748–766.
  69. Oseledets V.I. The multiplicative ergodic theorem. Characteristic Lyapunov exponents of dynamical systems. Proceedings of Moskow mat. society, 1968, vol. 19, pp. 179–210 (in Russian).
  70. Millionshchikov M.D. A stability criterion for the probability spectrum of linear systems of differential equations with recurrent coefficients and a criterion for almost reducibility of systems with almost periodic coefficients, Mat. collection, 1969, T. 78, no. 2, pp. 179–202 (in Russian).
  71. Kolmogorov A.N. A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Reports of the Academy of Sciences of the USSR, 1958, pp. 119, no. 5, pp. 861–864 (in Russian).
  72. Kolmogorov A.N. On entropy per unit time as a metric invariant of automorphisms. Reports of the Academy of Sciences of the USSR, 1959, vol. 124, no. 4. pp. 754–755 (in Russian).
  73. Sinai Ya.G. On the concept of the entropy of dynamical systems. Reports of the Academy of Sciences of the USSR, 1959, vol. 124, no. 4, pp. 768–771 (in Russian).
  74. Mukhin R.R. Kolmogorov’s development of the entropy direction of the ergodic theory. Histor.-mat. research, 2003, Series B. 8 (43), pp. 18–26 (in Russian).
  75. Sinai Ya.G. Written communication on 26.03.2007.
  76. Rokhlin V.A. Lectures on the entropy theory of transformations with invariant measure. Russian Mat. Survey, 1967, T. 22, v. 5. S. 3–56 (in Russian).
  77. Raussen M., Scow K. Interview with Ya.G. Sinai, an Abelian laureate of 2014. Mat. education. Series 3, issue. 19, Moscow: MСNMO Publishing House, 2015, pp. 52–69 (in Russian).
  78. Uspensky V.A. Kolmogorov, how do I remember him. Proceedings of NONmathematics. T. 2. Moscow: OGI, 2002, pp. 1068–1163 (in Russian).
  79. Kamenskiy M.I. Some of the stories of Vladimir Ivanovich not written in time. In: Vladimir Ivanovich Sobolev in the memoirs of colleagues and students. Voronezh: SCIENCE-UNIPRESS, 2014, pp. 50–53 (in Russian).
  80. Lyapunov A.M. Study of One of the Special Cases of the Problem of Stability of Motion. Leningrad: Leningrad State University, 1963, 117 p. (in Russian).
  81. Khinchin A.Ya. On the main theorems of information theory. Russian Mat. Survey, 1956, T. 11, v. 1, pp. 17–75 (in Russian).
  82. Pesin Ya.B. Lyapunov characteristic exponents and a smooth ergodic theory. Russian Mat. Survey, 1977, T. 32, v. 4, pp. 55–112 (in Russian).
  83. Landmark Writings in Western Mathematics, 1640–1940. Amsterdam: Elseiver, 2005, 1022 p. 
Received: 
24.04.2018
Accepted: 
29.05.2018
Published: 
31.08.2018
Short text (in English):
(downloads: 45)