Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Образец для цитирования:

Мухин Р. Р. Наследие Александра Михайловича Ляпунова и нелинейная динамика //Известия вузов. ПНД. 2018. Т. 26, вып. 4. С. 95-120. DOI: https://doi.org/10.18500/0869-6632-2018-26-4-95-120

Опубликована онлайн: 
31.08.2018
Язык публикации: 
русский
УДК: 
51(09)

Наследие Александра Михайловича Ляпунова и нелинейная динамика

Авторы: 
Мухин Равиль Рафкатович, Старооскольский технологический институт им. А.А. Угарова (филиал) Национальный исследовательский технологический университет "МИСиС" (СТИ НИТУ МИСиС)
Аннотация: 

Цель. Целью работы является изучение научного наследия А.М. Ляпунова с позиций нелинейной физики. Фундаментальной важности вклад Ляпунова определяется не только созданными им методами, которые вошли в основу математического аппарата при изучении нелинейных явлений. Его идеи и введенные им понятия способствовали формированию концепций и принципов нелинейной динамики. Метод. Исследование основано на анализе оригинальных работ Ляпунова с привлечением имеющейся литературы, касающейся его творчества. Результаты. Творчество Ляпунова тесно переплетается с деятельностью А.Пуанкаре, среди многих других фундаментальных достижений которого особое значение имеет качественная теория, составившая концептуальную основу нелинейной динамики. Ляпунов явился ближайшим продолжателем Пуанкаре в области качественной теории. Качественной по своей сути является теория устойчивости Ляпунова, одно из крупнейших достижений математики XIX в. С этих позиций Ляпунов подходит к самой постановке задачи устойчивости, выделяя невозмущенное и возмущенное движение. Он разработал методы решения задач устойчивости, предложив и строго обосновав конкретные алгоритмы. Одной из труднейших проблем математики и механики уже в течение нескольких столетий является проблема фигур равновесия вращающейся жидкости. Она имеет многочисленные приложения, стимулировала появление новых идей и целых направлений исследований. В решение проблемы фигур равновесия Ляпунов вместе с Пуанкаре внес определяющий вклад. Ляпунов подробно и совершенно строго исследовал серии новых фигур равновесия, их бифуркации и устойчивость. При этом он создал новые аналитические методы исследования, в частности, работы Ляпунова и Пуанкаре дали мощный импульс развитию теории нелинейных интегральных уравнений. Важное общенаучное значение имеет дальнейшее развитие результатов Ляпунова. Фундаментальное значение для нелинейной динамики приобрели показатели Ляпунова. В основе их использования лежит мультипликативная эргодическая теорема. Показатели Ляпунова связаны с другой важнейшей величиной, также являющейся мерой хаотичности и неустойчивости – энтропией Колмогорова–Синая. Обсуждение. Введенные Ляпуновым понятия и созданные методы имеют непреходящее значение, они не только составили математический аппарат, но в значительной степени формируют концепции и принципы нелинейной динамики.  

DOI: 
10.18500/0869-6632-2018-26-4-95-120
Краткое содержание: