ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuznetsov A. P., Turukina L. V. «Oscillator death» and quasiperiodic bifurcations in low-dimensional ensemble of van der Pol oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 135-144. DOI: 10.18500/0869-6632-2013-21-2-135-144

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 157)
Article type: 

«Oscillator death» and quasiperiodic bifurcations in low-dimensional ensemble of van der Pol oscillators

Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Turukina L. V., Saratov State University

The dynamics of the four dissipatively coupled van der Pol oscillator is considered. Lyapunov chart is presented in the parameter plane and its arrangement is discusses. The effect of increase of the threshold for the «oscillator death» regime and the possibility of complete and partial broadband synchronization are revealed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators, in particular, quasiperiodic saddle-node and Hopf bifurcations.

  1. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization. A fundamental nonlinear phenomenon. Moscow: Tehnoshpera; 2003. 494 p. (In Russian).
  2. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 360 p. (In Russian).
  3. Anishchenko VS, Astakhov VV, Vadivasova TE. Regular and chaotic self-oscillations. Timing and Effect of Fluctuations: Monograph Tutorial. Dolgoprudny: Intellect; 2009. 312 p. (In Russian).
  4. Blechman AI. Synchronization in nature and technology. Moscow: Nauka; 1981. 351 p. (In Russian).
  5. Glass L, MacKey MC. From Clocks to Chaos. Princeton University Press; 1988. 272 p.
  6. Balanov AG, Janson NB, Postnov DE, Sosnovtseva O. Synchronization: From simple to complex. Berlin: Springer; 2009. 426 p.
  7. Ivanchenko M, Osipov G, Shalfeev V, Kurths J. Synchronization of two non-scalarcoupled limit-cycle oscillators. Physica D. 2004;189(1–2):8–30. DOI:10.1016/j.physd.2003.09.035
  8. Kuznetsov AP, Paksjutov VI, Roman JP. Properties of synchronization in the system of nonidentical coupled van der Pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):3-15. DOI: 10.18500/0869-6632-2007-15-4-3-15.
  9. Kuznetsov AP, Roman JuP. Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol–Duffing oscillators. Broadband synchronization. Physica D. 2009;238(16):1499–1506. DOI:10.1016/j.physd.2009.04.016.
  10. Kuznetsov AP, Sataev IR, Tyuryukina LV. Synchronization and multi-frequency oscillations in the chain of phase oscillators. Nelin. Dinam. 2010;6(4):693–717.
  11. Emelyanova JP, Kuznetsov AP, Turukina LV. Dynamics of three coupled van der Pol oscillators with non-identical controlling parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(5):76-90. DOI: 10.18500/0869-6632-2011-19-5-76-90.
  12. Broer H, Simo C, Vitolo R. Quasi-periodic bifurcations of invariant circles in lowdimensional dissipative dynamical systems. Regular and Chaotic Dynamics. 2011;16(1–2):154–184. DOI: 10.1134/S1560354711010060.
Short text (in English):
(downloads: 73)