ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Balyakin A. A., Ryskin N. M. Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 3-21. DOI: 10.18500/0869-6632-2007-15-6-3-21

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 340)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback

Autors: 
Balyakin Artem Aleksandrovich, Saratov State University
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The numerical scheme for calculation the set of Lyapunov exponents in distributed systems with delayed feedback based on a modification of Benettine algorithm is described. The results of numerical simulation of two such systems (active oscillator with cubic nonlinearity and active oscillator of klystron type) are presented. The sets of Lyapunov exponents in different regimes, particularly in regimes of «weak» and «developed» chaos are analyzed. The calculation peculiarities of the set of Lyapunov exponents in the systems with delayed feedback are discussed.

Key words: 
Reference: 
  1. Anishchenko VS. Complex oscillations in simple systems. Moscow: Nauka; 1990. (in Russian).
  2. Dmitriev AS, Kislov VYa. Stochastic Oscillations in Radiophysics and Electronics. Moscow: Nauka; 1989. (in Russian).
  3. Kuznetsov SP. Dynamical Chaos: Course of Lectures. Moscow: Fizmatlit; 2001. (in Russian).
  4. Neimark YuI, Landa PS. Stochastic and Chaotic Oscillations. Moscow: Nauka; 1987. (in Russian).
  5. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Experimetal and theoretical study of stochastic self-oscillations in a backward-wave oscillator. Lectures on Microwave Electronics and Radiophysics (Proc. of 5th Winter School-Seminar). Saratov: Saratov Univ. Publ. 1980;5:25–77 (in Russian).
  6. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Stochastic self-oscillations and instability in a reverse wave lamp. Radio Engineering and electronics. 1983;28(6):1136–1139 (in Russian).
  7. Anfinogentov VG. Chaotic oscillation in the electron beam with virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):69–83 (in Russian).
  8. Farmer JD. Chaotic attractors of an infinite-dimensional dynamical system. Physica D. 1982;4(3):366–393. DOI: 10.1016/0167-2789(82)90042-2.
  9. Cenys A, Tamasevicius A, Mykolaitis G, Blumeliene S. Coupled VHF delay line chaos generators. Proc. First International Workshop on the Noise Radar Technology (NRTW-2002). Yalta, Ukraine, September 18–20. 2002:136–140.
  10. Kuznetsov SP, Trubetskov DI. Chaos and hyperchaos in a backward-wave oscillator. Radiophysics and Quantum Electronics. 2004;47(5-6):341–355. DOI: 10.1023/B:RAQE.0000046309.49269.af.
  11. Blokhina EV, Kuznetsov SP, Rozhnev AG. High-dimensional chaotic attractors in a gyrotron with nonfixed field structure. Technical Physics Letters. 2006;32(4):364–368. DOI: 10.1134/S1063785006040274.
  12. Blokhina EV, Kuznetsov SP, Rozhnev AG. High-dimensional chaos in a gyrotron. IEEE Trans. on Electron Devices. 2007;54(2):188–193. DOI: 10.1109/TED.2006.888757.
  13. Kuznetsov SP. Complex dynamics of oscillators with delayed feedback. Radiophysics and Quantum Electronics. 1982;25(12):996–1009.
  14. Landa PS. Nonlinear Oscillations and Waves. Moscow: Fizmatlit; 1997. (in Russian).
  15. Ryskin NM, Shigaev AM. Complex dynamics of a simple distributed self-oscillatory model system with delay. Technical Physics. 2002;47(7):795–802. DOI: 10.1134/1.1495037.
  16. Dmitrieva TV, Ryskin NM, Shigaev AM. Complex dynamics of simple models of distributed self-oscillating delayed feedback systems. Nonlinear Phenomena in Complex Systems. 2001;4(4):376–382.
  17. Dmitrieva TV, Ryskin NM, Titov VN, Shigaev AM. Complex dynamics of simple models of extended electron-wave systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(6):66–81 (in Russian).
  18. El'sgol'ts LE, Norkin SB. Introduction to the Theory of Differential Equations with Deviating Argument. Moscow: Nauka; 1971. (in Russian).
  19. Shigaev AM, Dmitriev BS, Zharkov YD, Ryskin NM. Chaotic dynamics of delayed feedback klystron oscillator and its control by external signal. IEEE Trans. Electron Devices. 2005;52(5):790–797. DOI: 10.1109/TED.2005.845839.
  20. Ryskin NM, Shigaev AM. Complex dynamics of a double-cavity delayed feedback Klystron oscillator. Technical Physics. 2006;51(1):68–77. DOI: 10.1134/S1063784206010117.
  21. Dmitriev BS, Zharkov YuD, Kizhaeva KK, Klokotov DV, Ryskin NM, Shigaev AM. Complex dynamics of multiresonator klystron autogenerators with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(5):37–46 (in Russian).
  22. Dronov V, Hendrey MR, Antonsen TM, Ott E. Communication with a chaotic traveling wave tube microwave generator. Chaos. 2004;14(1):30–37. DOI: 10.1063/1.1622352.
  23. Marchewka C, Larsen P, Bhattacharjee S, Booske J, Sengele S, Ryskin NM, Titov VN. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback. Phys. Plasmas. 2006;13(1):013104. DOI: 10.1063/1.2161170.
  24. Kac VA, Kuznetsov SP. Transition to the multimode chaos in a simple-model of generator with retardation. Pisma v Zhurnal Tekhnicheskoi Fiziki. 1987;13(12):727–733.
Received: 
07.05.2007
Accepted: 
07.09.2007
Published: 
30.01.2008
Short text (in English):
(downloads: 53)