ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Baryshevsky V. G., Sytova S. N. Radiative processes, radiation instability and chaos in the radiation formed by relativistic beams moving in three-dimensional (two-dimensional) space-periodic structures (natural and photonic crystals). Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 6, pp. 25-48. DOI: 10.18500/0869-6632-2013-21-6-25-48

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 137)
Language: 
Russian
Article type: 
Review
UDC: 
535.3+537.5+539.12

Radiative processes, radiation instability and chaos in the radiation formed by relativistic beams moving in three-dimensional (two-dimensional) space-periodic structures (natural and photonic crystals)

Autors: 
Baryshevsky Vladimir Grigorevich, Research Institute for Nuclear Problems of Belarusian State University
Sytova Svetlana Nikolaevna, Research Institute for Nuclear Problems of Belarusian State University
Abstract: 

We review the results of studies of spontaneous and stimulated emission of relativistic particles in natural and photonic crystals. We consider the diffraction of electromagnetic waves in a crystal, and the resonance and parametric (quasi-Cherenkov) X-ray radiation, the radiation in the channeling of relativistic particles in crystals, diffraction radiation in conditions of channeling, diffraction radiation of a relativistic oscillator, induced radiation in multidimensional space-periodic resonators (natural or artificial (electromagnetic, photonic) crystals). We present the basic theory of volume free-electron lasers. On the example of quasi-Cherenkov parametric radiation we consider the formation of chaos in the processes of radiation in multidimensional space-periodic structures.

Reference: 
  1. Trubetskov DI, Khramov AE. Lectures on microwave electronics for physicists. Vol.1,2. Moscow: Fizmatlit; 2003-2004. 495 p, 646 p.
  2. Baryshevsky VG. Spontaneous and induced radiation by relativistic particles in natural and photonic crystals. Crystal X-ray lasers and Volume Free Electron Lasers (VFEL). arXiv:1101.0783v1 [physics.acc-ph]. 4 Jan 2011. 199 p.
  3. Baryshevsky VG. Title: High Power microwave and optical volume free electron lasers (VFELs). arXiv:1211.4769 [physics.optics]. 20 Nov 2012. 35 p.
  4. Baryshevsky VG, Dubovskaya IYa. Diffraction phenomena in spontaneous and stimulated radiation by relativistic particles in crystals (review). Lawrence Berkeley Laboratory. 1991. 119 p.
  5. Baryshevsky VG. Channeling, radiation and reactions in crystals at high energies. Minsk: BSU; 1982. 256 p. (In Russian).
  6. Baryshevsky VG. Nuclear optics of polarized field. Moscow: Energoatomizdat; 1995. 319 p. (In Russian).
  7. Baryshevsky VG, Feranchuk ID, Ulyanenkov AP. Parametric X-ray Radiation in Crystals: Theory, Experiment and Applications. Series: Springer Tracts in Modern Physics. Springer. 2005;213:1–71. DOI: 10.1007/B95327.
  8. Baryshevsky VG. High-Energy Nuclear Optics of Polarized Particles. Singapore: World Press; 2012. 620 p.
  9. Morse FM, Feshbach G. Methods of theoretical physics. V.1. Moscow: Foreign Languages Publishing House; 1958. 931 p. (In Russian).
  10. Landau LD, Lifshits EM. Electrodynamics of continuous field. Moscow: Nauka; 1982. 621 p. (In Russian).
  11. Nikolsky BV. Electrodynamics and radio wave propagation. Moscow: Nauka; 1973. 607 p. (In Russian).
  12. Pinsker ZG. X-ray crystal optics. Moscow: Nauka; 1982. 392 p. (In Russian).
  13. James R. X-ray diffraction optical principles. Moscow: Foreign Languages Publishing House; 1950. 572 p. (In Russian).
  14. Batterman BW, Cole H. Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 1964;36(3):681–717. DOI: 10.1103/RevModPhys.36.681.
  15. Zhang Sh. Multi-wave diffraction of X-rays in crystals. Moscow: Mir; 1987. 336 p. (In Russian).
  16. Ginsburg VL, Frank IM. Radiation of uniformly moving electron, which occurs at its transition from one medium to another. JETP. 1946;16(1):15–28.
  17. Garibyan GM. To the theory of transient radiation and ionization losses of particle energy. JETP. 1959;37(2):527.
  18. Barsukov KA. Transient radiation in the waveguide. JETP. 1959;37(4):1106–1109.
  19. Frank IM. Radiation Vavilov-Cherenkov. Moscow: Nauka; 1988. 284 p. (In Russian).
  20. Ter-Mikaelyan ML. Emission of fast particles in a heterogeneous medium. Dokl. Akad. Nauk SSSR. 1960;134(2):318–321.
  21. Ter-Mikaelyan ML. Emission of fast particles in a heterogeneous medium. Nuclear Physics. 1961;24(1):43–62. DOI: 10.1016/0029-5582(61)91015-x.
  22. Ter-Mikaelyan ML. Influence of the medium on electromagnetic processes at high energies. Yerevan: Nauka; 1969. 469 p. (In Russian).
  23. Bolotovskii BM, Voskresenskii GV. Diffraction radiation. Sov. Phys. Usp. 1966;9(1):73–96. DOI: 10.1070/PU1966v009n01ABEH002892.
  24. Baryshevsky VG. On the scattering of light by the flow of electrons passing through the crystal. Dokl. AS BSSR. 1971;15(4):306–308.
  25. Baryshevsky VG, Feranchuk ID. On the transition radiation of gamma-quantum in the crystal. JETP. 1971;61(3):944–948.
  26. Adishchev JN, Baryshevsky VG, Vorobyov SA. et al. Experimantal observation of parametric X-ray emission. Journal of Experimental and Theoretical Physics Letters (JETP Letters). 1985;41(7):361–363.
  27. Baryshevsky VG, Danilov VA, Ermakovich OL. et al. Angular distribution of parametric X-rays. Physics Letters A. 1985;10:477–479. DOI: 10.1016/0375-9601(85)90560-2.
  28. Afanasenko VP, Baryshevsky VG, Gradovsky OT. et al. Detection of parametric X-ray radiation of a GaAs monocrystal. Phys. Lett. 1989;141(5-6):311–313. DOI: 10.1016/0375-9601(89)90493-3.
  29. Afanasenko VP, Baryshevsky VG. and others. Detection of multi-wave generation of parametric X-ray radiation (PXR). Technical Physics Letters. 1989;15(1):33–36.
  30. Afanasenko VP, Baryshevskii VG, Gatsikha SV. et al. Observation of anomaly in angular distribution of parametric x-ray scattering. JETP Letters. 1990;51(4):213–215.
  31. Brenzinger K-H, Herberg C, Limburg B. et al. Investigation of production mechanism of parametric X-ray radiation. Zeitschrift fur Phusik A. 1997;358(1):107–114. DOI:10.1007/S002180050283.
  32. Lautha W, Backe H, Kettigb O. et al. Coherent X-rays at MAMI. Eur. Phys. J. A 2006;28(S1):185–195. DOI: 10.1007/3-540-36754-3_19.
  33. Baryshevskii VG, Dubovskaya IYa. The complex and anomalous Doppler effects for channeled positron (electron), Dokl. Akad. Nauk SSSR. 1976;231(6):1335–1338.
  34. Kumakhov MA. On the theory of electromagnetic radiation of charged particles in a crystal. Phys. Lett. A. 1976;57(1):17–18. DOI: 10.1016/0375-9601(76)90438-2.
  35. Swent RL, Pantell RH, Alguard MJ. et al. Observation of channeling radiation from relativistic electrons. Phys. Rev. Let. 1979;43(23):1723–1726. DOI: 10.1103/PHYSREVLETT.43.1723.
  36. Alguard MJ, Swent RL, Pantell RH. et al. Observation of radiation from channeled positrons. Phys. Rev. Let. 1979;42(17):1148–1151.
  37. Cue N, Bonderup E, Marsh BB. et al. Transitions between bound states for axially channeled MeV electrons. Phys. Let. A. 1980;80(1):26–28. DOI: 10.1016/0375-9601(80)90444-2.
  38. Baryshevskii VG, Dubovskaya IYa. Coherent radiation of the channeling positron (electron). Phys. Status Solidi (b). 1977;82(1):403–412. DOI: 10.1002/PSSB.2220820147.
  39. Ginsburg VL. Quantum theory of light motion of an electron uniformly moving in a medium. JETP. 1940;10(6):589–600.
  40. Korotchenko KB, Pivovarov YuL, Tukhfatullin TA. Angular distributions of diffracted X-ray radiation from channeled electrons in Si and LiF crystals: Influence of energy levels band structure. Nucl. Instr. Meth. Phys. Res. 2008;266(17):3753–3757. DOI: 10.1016/j.nimb.2008.03.203.
  41. Baryshevsky VG. Anomaly in mirror reflection of X-rays and gamma-quantum from crystals. Technical Physics Letters. 1976;2(3):112–116.
  42. Baryshevskii VG. Surface parametric radiation from relativistic particles. Dokl. Akad. Nauk SSSR. 1988;299(6):1363–1366.
  43. Baryshevsky VG, Feranchuk ID. Parametric beam instability of relativistic charged particles in a crystal. Phys. Lett. A. 1984;102(3):141–144. DOI: 10.1016/0375-9601(84)90799-0.
  44. Baryshevsky VG, Feranchuk ID. Quantum theory of X-ray parametric generator taking into account multi-wave diffraction. Proceedings of the Academy of Sciences of BSSR. Physics and Mathematics Series. 1985;2:79–86.
  45. Baryshevsky VG. Instability of waves in periodic medium. Dokl. AS BSSR. 1987;31(12):1089–1092.
  46. Baryshevsky VG, Dubovskaya IYa, Feranchuk ID. Cherenkov instability of a beam of charged particles passing through a three-dimensional space-periodic medium. Proceedings of the Academy of Sciences of BSSR. Physics and Mathematics Series. 1988;1:92–97.
  47. Baryshevsky VG, Dubovskaya IYa. Induced X-ray radiation of a relativistic electron beam in a laser on free electrons with distributed feedback in a three-dimensional space-periodic medium. Proceedings of the Academy of Sciences of BSSR. Physics and Mathematics Series. 1990;1:30.
  48. Baryshevsky VG, Batrakov KG, Dubovskaya IYa. LSE on parametric (quasicherenk) radiation. Proceedings of the Academy of Sciences of BSSR. Physics and Mathematics Series. 1991;1:53.
  49. Baryshevsky VG, Batrakov KG, Dubovskaya IYa. Parametric (quasi-Cherenkov) X-ray free electron laser. J. Phys. D. 1991;24(8):1250–1257. DOI: 10.1088/0022-3727/24/8/005.
  50. Baryshevsky VG, Dubovskaya IY, Zege AV. The influence of absorption on the generation threshold in an X-ray laser by channeling radiation in the presence of distributed feedback. Physics Letters A. 1991;149:30–34. DOI: 10.1016/0375-9601(90)90865-L.
  51. Marshall T. Free electron lasers. Moscow: Mir; 1987. 238 p. (In Russian).
  52. Baryshevsky VG, Batrakov KG, Dubovskaya IYa, Karpovich VA, Rodionova VN. Volume Quasi-Cherenkov FEL in mm-Spectral Range. Proc. Free Electron Lasers. 1996; 75 p.
  53. Baryshevsky VG, Batrakov KG, Gurinovich AA. et al. First lasing of a volume FEL (VFEL) at a length range 4-6 mm. Nucl. Instr. Meth. Phys. Res. 2002;483:21–24.
  54. Baryshevsky V, Belous N, Gurinovich A. at el. Volume Free Electron Laser with a grid photonic crystal with variable period: Theory and experiment. Proc. FEL2009 (Liverpool, UK, MOPC49). 2009. 134–137 p.
  55. Baryshevsky VG, Belous NA, Gurinovich AA. et al. Experimental studies of Volume FELs with a photonic crystal. Proc. 35th Int. Conf. on Infrared, Millimeter, and Terahertz Waves. IRMMWTHz; 2010. 2 p.
  56. Baryshevsky VG, Belous NA, Gurinovich AA. et al. Experimental studies of volume FELs with a photonic crystal made of foils. Proc. 32 Int. Conf. FEL2010. THPB18; 2010. 632–635 p.
  57. Tager AS, Zyulina EA, Victorious AS. et al. Low-power electron beam lamp of millimeter range. Copyright Certificate USSR. SU 1840644 А1. 1956.
  58. Silin RA, Sazonov VP. Slowing down systems. Moscow: Sovet radio; 1966. 632 p. (In Russian).
  59. Silin RA. Periodic waveguides. Moscow: Fasiz; 2002. 436 p. (In Russian).
  60. Erokhin NS. et al. Non-equilibrium and resonant processes in plasma radiophysics. Moscow: Nauka. 1982. 271 p. (In Russian).
  61. Bratman VL, Ginsburg NA, Denisov GG. About using distributed feedback in LSE. Technical Physics Letters. 1981;7(21):1320–1324.
  62. Baryshevsky VG, Batrakov KG, Evdokimov VA. et al. Experimental observation of radiation frequency tuning in "OLSE-10"prototype of volume free electron laser. Nucl. Instr. Meth. Phys. Res. 2006;252(1):86–91. DOI: 10.1016/j.nimb.2006.07.029.
  63. Baryshevsky VG, Gurinovich AA. Spontaneous and induced parametric and Smith-Purcell radiation from electrons moving in a photonic crystal built from the metallic threads. Nucl. Instr. Meth. Phys. Res. 2006;252(1):92–101. DOI: 10.1016/j.nimb.2006.07.009.
  64. Weinstein LA, Solntsev VA. Lectures on ultra-high frequency electronics. Moscow: Sovet radio; 1973. 399 p. (In Russian).
  65. Kuznetsov SP, Trubetskov DI. Non-stationary non-linear phenomena when interacting an electronic stream moving in crossed fields with an inverse electromagnetic wave. Radiophysics and Quantum Electronics. 1977;20(2):300–312.
  66. Ginzburg NA, Kuznetsov SP, Fedoseeva TN. Theory of transients in relativistic backward-wave tubes. Radiophysics and Quantum Electronics. 1978;21(7):728–739. DOI : 10.1007/BF01033055.
  67. Trubetskoy DI, Anfinogentov VG, Ryskin NM. et sl. Complex dynamics of microwave electronic devices: Nonlinear non-stationary theory from the standpoint of nonlinear dynamics. Radioengineering. 1999;4:61–68.
  68. Batrakov KG, Sytova SN. Modeling of volume free electron lasers. Computational Mathematics and Mathematical Physics. 2005;45(4):666–676.
  69. Sytova SN. Chaos in volume free electron lasers. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(2):93–111. DOI: 10.18500/0869-6632-2011-19-2-93-111.
  70. Sytova SN. Models of volume free electron lasers. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(6):124–135. DOI: 10.18500/0869-6632-2012-20-6-124-135.
  71. Sytova S. Comparison of one-dimensional and volume distributed feedback in microwave vacuum electronic devices. Nonlinear Phenomena in Complex Systems. 2012;15(4):378–386.
Received: 
08.10.2013
Accepted: 
08.10.2013
Published: 
28.02.2014
Short text (in English):
(downloads: 67)