ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Karavaev A. S., Ponomarenko V. I., Prokhorov M. D. Reconstruction of neutral time-delay systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 3-16. DOI: 10.18500/0869-6632-2011-19-5-3-16

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 143)
Language: 
Russian
Article type: 
Article
UDC: 
537.86

Reconstruction of neutral time-delay systems

Autors: 
Karavaev Anatolij Sergeevich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The methods are proposed for the reconstruction of time-delay systems modeled by neutral delay-differential equations from their time series. The methods are successfully applied to the recovery of generalized Mackey–Glass equation and equations modeling ship rolling and human movement from simulated data.

Reference: 
  1. Mackey MC, Glass L. Oscillations and chaos in physiological control systems. Science. 1977;197(4300):287–289. DOI: 10.1126/science.267326.
  2. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 1979;30(2):257–261. DOI: 10.1016/0030-4018(79)90090-7.
  3. Epstein IR. Delay effects and differential delay equations in chemical-kinetics. Int. Rev. Phys. Chem. 1992;11(1):135–160. DOI: 10.1080/01442359209353268.
  4. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press; 1993. 412 p.
  5. Voss H, Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations. Phys. Lett. A. 1997;234(5):336–344. DOI: 10.1016/S0375-9601(97)00598-7.
  6. Tian YC, Gao F. Extraction of delay information from chaotic time series based on information entropy. Physica D. 1997;108(1–2):113–118. DOI: 10.1016/S0167-2789%2897%2982008-8.
  7. Hegger R, Bunner MJ, Kantz H, Giaquinta A. Identifying and modeling delay feedback systems. Phys. Rev. Lett. 1998;81(3):558–561. DOI: 10.1103/PhysRevLett.81.558.
  8. Bunner MJ, Ciofini M, Giaquinta A, Hegger R, Kantz H, Meucci R, Politi A. Reconstruction of systems with delayed feedback: I. Theory. Eur. Phys. J. D. 2000;10(2):165–176. DOI: 10.1007/s100530050538.
  9. Ponomarenko VI, Prokhorov MD, Karavaev AS, Bezruchko BP. Recovery of parameters of delayed-feedback systems from chaotic time series. Journal of Experimental and Theoretical Physics. 2005;100(3):457–467. DOI: 10.1134/1.1901758.
  10. Ortin S, Gutierrez JM, Pesquera L, Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A. 2005;351(1):133–141. DOI: 10.1016/j.physa.2004.12.015.
  11. Siefert M. Practical criterion for delay estimation using random perturbations. Phys. Rev. E. 2007;76(2):026215. DOI: 10.1103/physreve.76.026215.
  12. Yu D, Frasca M, Liu F. Control-based method to identify underlying delays of a nonlinear dynamical system. Phys. Rev. E. 2008;78(4):046209. DOI: 10.1103/physreve.78.046209.
  13. Prokhorov MD, Ponomarenko VI. Reconstruction of time-delay systems using small impulsive disturbances. Phys. Rev. E. 2009;80(6):066206. DOI: 10.1103/PhysRevE.80.066206.
  14. Zunino L, Soriano MC, Fischer I, Rosso OA, Mirasso CR. Permutation-information-theory approach to unveil delay dynamics from time-series analysis. Phys. Rev. E. 2010;82(4):046212. DOI: 10.1103/PhysRevE.82.046212.
  15. Ma H, Xu B, Lin W, Feng J. Adaptive identification of time delays in nonlinear dynamical models. Phys. Rev. E. 2010;82(6):066210. DOI: 10.1103/PhysRevE.82.066210.
  16. Gopalsamy K. Oscillations in neutral delay-differential equations. J. Math. Phys. Sci. 1987;21:23.
  17. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Dordrecht: Kluwer; 1992. 502 p. DOI: 10.1007/978-94-015-7920-9.
  18. Hale JK, Lunel SMV. Introduction to Functional Differential Equations. New York: Springer; 1993. 450 p. DOI: 10.1007/978-1-4612-4342-7.
  19. Bocharov GA, Rihan FA. Numerical modelling in biosciences using delay differential equations. J. Comp. Appl. Math. 2000;125(1–2):183–199. DOI: 10.1016/S0377-0427(00)00468-4.
  20. Patanarapeelert K, Frank TD, Friedrich R, Beek PJ, Tang IM. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise. Phys. Lett. A. 2006;360(1):190–198. DOI: 10.1016/j.physleta.2006.08.003.
  21. Peterka RJ. Sensorimotor integration in human postural control. J. Neurophysiol. 2002;88(3):1097–1118. DOI: 10.1152/jn.2002.88.3.1097.  
Received: 
14.06.2011
Accepted: 
19.10.2011
Published: 
30.12.2011
Short text (in English):
(downloads: 90)