ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Balandin D. V., Kogan M. M. Robust stability of a parametrically disturbed pendulum. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 3, pp. 61-66. DOI: 10.18500/0869-6632-2005-13-3-61-66

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 207)
Language: 
Russian
Article type: 
Article
UDC: 
62-50

Robust stability of a parametrically disturbed pendulum

Autors: 
Balandin Dmitry Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Kogan Mark Mihajlovich, Nizhny Novgorod State Architectural and Construction University
Abstract: 

Robust stability conditions in terms of linear matrix inequalities for a parametrically disturbed pendulum are obtained. Numerical results for estimating radius of robust stability are given.

Key words: 
Reference: 
  1. Neimark YI. Stability of Linearized Systems. Leningrad: LRBAFEA; 1949 (in Russian).
  2. Neimark YI. Robust stability of linear systems. Dokl. Math. 1991;36(7):506–507.
  3. Neimark YI. The measure of robust stability and modality of linear systems. Dokl. Math. 1992;37(7):321–322.
  4. Neimark YI. The region of robust stability and robustness with respect to nonlinear parameters. Dokl. Math. 1992;37(7):323–324.
  5. Neimark YI. Robust stability and D-partitioning. Autom. Remote Control. 1992;53(7):957–965.
  6. Neimark YI. Robust stability under periodic perturbations. Autom. Remote Control. 1992;53(12):1863–1865.
  7. Neimark YI. Robust interval matrix stability. Autom. Remote Control. 1994;55(7):1037–1041.
  8. Polyak BT, Shcherbakov PS. Robust Stability and Control. Moscow: Nauka; 2002. 303 p. (in Russian).
  9. Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM; 1994. 185 p. DOI: 10.1137/1.9781611970777.
  10. Gelig AK, Leonov GA, Yakubovich VA. Stability of Nonlinear Systems with a Non-Unique Equilibrium State. Moscow: Nauka; 1978. 400 p. (in Russian).
  11. Gahinet P, Nemirovski A, Laub A, Chilali M. LMI Control Toolbox. For Use with MATLAB. The Math Works Inc.; 1995.
  12. Balandin DV, Kogan MM. Solvability conditions for the robust output h∞ control problem. Dokl. Math. 2004;69(3):480–482.
  13. Balandin DV, Kogan MM. Linear matrix inequalities in the robust output h∞ control problem. Dokl. Math. 2004;69(3):488–490.
  14. Balandin DV, Kogan MM. Synthesis of controllers on the basis of a solution of linear matrix inequalities and a search algorithm for reciprocal matrices. Autom. Remote Control. 2005;66(1):74–91. DOI: 10.1007/s10513-005-0008-2.
Received: 
28.06.2005
Accepted: 
28.06.2005
Published: 
31.10.2005
Short text (in English):
(downloads: 71)