ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Smirnov L. A., Kryukov A. K., Osipov G. V. Rotational dynamics in the system of two coupled pendulums. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 5, pp. 41-61. DOI: 10.18500/0869-6632-2015-23-5-41-61

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 235)
Language: 
Russian
Article type: 
Article
UDC: 
621.391.01

Rotational dynamics in the system of two coupled pendulums

Autors: 
Smirnov Lev Aleksandrovich, Institute of Applied Physics of the Russian Academy of Sciences
Kryukov Aleksej Konstantinovich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

We consider dynamics in a pair of nonlinearly coupled pendulums. With existence of dissipation and constant torque such system can demonstrate in-phase periodical rotation in addition to the stable state. We have shown in numerical simulations that such in- phase rotation becomes unstable at certain values of coupling strength. In the limit of small dissipation we have created an asymptotic theory that explains instability of the in-phase cycle. Found analytical equations for coupling strength values corresponding to the boundaries of the instability area. Numerical simulations show that there is a coupling strength interval where the system can have a pair of stable and unstable non in-phase cycles in addition to the stable in-phase motion. Therefore, we demonstrated that nonlinearly coupled pendulums have a bi-stability of the limit cycles. Analysed bifurcations which lead to originating and disappearing of non in-phase cycles.

Reference: 
  1. Pikovsky A., Rosenblum M., Kurths J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, 2001.
  2. Braun O., Kivshar Yu.S. The Frenkel–Kontorova model: Concepts, Methods, and Applications. Springer, 2004.
  3. Yakushevich L.V. Nonlinear Physics of DNA. 2nd Edition. Wiley-Vch, 2004.
  4. Afraimovich V.S., Nekorkin V.I., Osipov G.V., Shalfeev V.D. Stability, structures and chaos in nonlinear synchronization network. Singapore: World Scientific, 1994.
  5. Astakhov V.V., Bezruckho B.P., Kuznetsov S.P., Seleznyov E.P. // ZhETF Letters. 1988. Vol. 14, No 1. P. 37.
  6. Leeman C., Lereh P., Racine G. A., Martinoli P. // Phys. Rev. Lett. 1986. Vol. 56, No 12. P. 1291.
  7. Ryu S., Yu W., Stroud D. // Phys. Rev. E. 1996. Vol. 53, No 3. P. 2190.
  8. Kim B. J., Kim S., Lee S. J. // Phys. Rev. B. 1995. Vol. 51, No 13. P. 8462.
  9. Kim J., Choe W. G., KimS., Lee H. J. // Phys. Rev. B. 1994. Vol. 49, No 1. P. 459.
  10. Denniston C., Tang C. // Phys. Rev. Lett. 1995. Vol. 75, No 21. P. 3930.
  11. Qjan M., Weng J.-Z. // Annals of Physics. 2008. Vol. 323. P. 1956.
  12. Fishman R. S., Stroud D. // Phys. Rev. B. 1988. Vol. 38, No 1. P. 290.
  13. Yakushevich L.V., Gapa S., Awrejcewicz J. Mechanical analog of the DNA base pair oscillations // Dynamical Systems. Theory and Applications / Eds. by J. Awrejcewicz et al. Lodz: Left Grupa, 2009. P. 879.
  14. Yakushevich L.V. // Computer Research and Modeling. 2011. Vol. 3, No 3. P. 319.
  15. Avreytsevich Y., Mlynarska S., Yakushevich L.V. // Journal of Applied Mathematics and Mechanics. 2013. Vol. 77, No 4. P. 1.
  16. Krueger A., Protozanova E., Frank-Kamenetskii M. // Biophys. J. 2006. Vol. 90. P. 3091.
  17. Takeno S., Peyrard M. // Physica D. 1996. Vol. 92. P. 140.
  18. Zhang F. // Physica D. 1997. Vol. 110. P. 51.
  19. Kosterlitz J.M., Thouless D.J. // J. Phys. C: Solid State Phys. 1973. Vol. 6. P. 1181.
  20. Antoni M., Ruffo S. // Phys. Rev. E. 1995. Vol. 52, No 3. P. 2361.
  21. Wang X.Y., Taylor P.L. // Phys. Rev. Lett. 1996. Vol. 76, No 4. P. 640.
  22. Fillaux F., Carlile C.J. // Phys. Rev. B. 1990. Vol. 42, No 10. P. 5990.
  23. Fillaux F., Carlile C. J., Kearley G. J. // Phys. Rev. B. 1991. Vol. 44, No 22. P. 12280.
  24. Zhang F., Collins M. A., Kivshar Yu. S. // Phys. Rev. E. 1995. V. 51, No 4. P. 3774.
  25. Acebron J. A., Bonilla L. L., Perez Vicente C. J., Ritort F., Spigler R. // Rev. Mod. Phys. 2005. Vol. 77, No 1. P. 137.
  26. Tanaka H.-A., Lichtenberg A. J., Oishi S. // Phys. Rev. Lett. 1997. Vol. 78, No 11. P. 2104.
  27. Tanaka H.-A., Lichtenberg A. J., Oishi S. // Physica D: Nonlin. Phenom. 1997. Vol. 100, No 3–4. P. 279.
  28. Rohden M., Sorge A., Timme M., Witthaut D. // Phys. Rev. Lett. Vol. 109, No 6. P. 064101(1).
  29. Rohden M., Sorge A., Witthaut D., Timme M.// Chaos. 2014. Vol.24, No1.P. 013123(1).
  30. Olmi S., Navas A., Boccaletti S., Torcini A. //
  31. Olmi S., Martens E. A., Thutupalli S., Torcini A. // Phys. Rev. E. 2015. Vol. 92, No 3. P. 030901(1).
  32. Ha S.-Y., Kim Y., Li Z. // SIAM J. Appl. Dyn. Syst. 2014. Vol. 13, No 1. P. 466.
  33. Gupta S., Campa A., Ruffo S. // Phys. Rev. E. 2014. Vol. 89, No 2. P. 022123(1).
  34. Komarov M., Gupta S., Pikovsky A. // Europhysics Letters. 2014. Vol. 106, No 4. P. 40003(1).
  35. Ji P., Peron T.K. DM., Menck P.J., Rodrigues F.A., Kurths J. // Phys. Rev. Lett. 2013. Vol. 110, No 21. P. 218701(1).
  36. Ji P., Peron T.K. DM., Menck P.J., Rodrigues F.A., Kurths J. // Phys. Rev. E. 2014. Vol. 90, No 6. P. 062810(1).
  37. Peron T.K. DM., Ji P., Rodrigues F. A., Kurths J. // Phys. Rev. E. 2015. Vol. 91, No 5. P. 052805(1).
  38. Goldstein G. Classical Mechanics. 3rd Edition. Addison–Wesley, 2001.
  39. Landau L.D., Lifshitz E.M. Mechanics. 5rd Edition. Moscow: Physmatlit, 2004.
  40. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of Oscillations. Moscow: Science, 1981.
  41. Belykh V.N., Pedersen N.F., Soerensen O.H. // Phys. Rev. B. 1977. Vol. 16, No 11. P. 4853.
  42. Tricomi F. Integrazioni di unequazione differenziale presentatasi in elettrotecnica // Annalidella Scuola Normale Superiore di Pisa-Classe di Scienze. 1933. Vol. 2, No 1.P. 1. 4 (2014).
  43. Yakubovich V.A., Starzhinskiy V.M. Parametric resonance in linear systems. Moscow: Science, 1987.
  44. Bogolyubov N.N., Mitropolsky Y.A. Asymptotic methods in the theory of non-linear oscillations. Moscow: Science, 1974.
Received: 
19.11.2015
Accepted: 
15.12.2015
Published: 
29.04.2016
Short text (in English):
(downloads: 95)