For citation:
Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. Stability of multi-machine power grid with a common load to connecting and disconnecting of generators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 49-67. DOI: 10.18500/0869-6632-003195, EDN: JGCTLP
Stability of multi-machine power grid with a common load to connecting and disconnecting of generators
The purpose of this work is studying the stability of the power grid, consisting of an arbitrary number of synchronous generators supplying a common passive linear load, to disconnection and connection of generators.
Methods. In this paper, numerical modeling of the power grid operation and the second Lyapunov method are used.
Results. Conditions for safe disconnection and connection of generators have been revealed, under which a synchronous mode is established in the disturbed power grid.
Conclusion. The power grid consisting of an arbitrary number of synchronous generators supplying a common passive linear load is considered. Using the approach based on the second Lyapunov method, conditions on parameters are found that ensure safe disconnection of generators, including, if any, a generator involving in the “inhomogeneous” load supply path, that differs from the others in current and transmitted power. The obtained estimates are confirmed numerically for power grids of various sizes. The evolution of the area corresponding to the safe connection of a generator to the power grid of five generators is also numerically traced.
- Zhdanov PS. Stability Issues for Electrical Systems. M.: Energy; 1979. 456 p. (in Russian).
- Venikov VA. Transient electromechanical processes in electrical systems. M.: Vysshaya shkola; 1985. 536 p. (in Russian).
- Idelchik VI. Electrical systems and networks. M.: Energoatomizdat; 1989. 592 p. (in Russian).
- Kundur P, Balu NJ, Lauby MG. Power System Stability and Control. New York: McGraw-Hill Education; 1994. 1176 p.
- Sauer P, Pai A.Power System Dynamics and Stability. Prentice-Hall: Englewood Cliffs; 1998. 357 p.
- Anderson PM, Fouad AA. Power System Control and Stability. NJ: IEEE, Piscataway; 2003. 672 p.
- Horowitz SH, Phadke AG, Henville CF. Power System Relaying. New York: John Wiley & Sons; 2008. 528 p.
- Machowski J, Bialek J, Bumby D. Power System Dynamics: Stability and Control. New York: John Wiley and Sons; 2008. 629 p.
- Grainger JJ., Stevenson WD. Power System Analysis. New York: McGraw-Hill Education; 2016. 787 p.
- Dobson I, Carreras BA, Lynch VE, Newman DE. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos. 2007;17(2):026103 DOI: 10.1063/1.2737822.
- Schafer B, Witthaut D, Timme M, Latora V. Dynamically induced cascading failures in power grids. Nat. Commun. 2018;9(1):1975 DOI: 10.1038/s41467-018-04287-5.
- Bialek JW. Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003. In: IEEE Lausanne Power Tech. Lausanne, Switzerland. 2007. P. 51-56 DOI: 10.1109/PCT.2007.4538291.
- Li C, Sun Y, Chen X. Analysis of the blackout in Europe on November 4, 2006. In: 2007 International Power Engineering Conference (IPEC 2007). 2007. P. 939-944.
- van der Vleuten E, Lagendijk V. Interpreting transnational infrastructure vulnerability: European blackout and the historical dynamics of transnational electricity governance. Energy Policy. 2010;38(4):2053-2062 DOI: 10.1016/j.enpol.2009.11.030.
- Veloza OP, Santamaria F. Analysis of major blackouts from 2003 to 2015: classification of incidents and review of main causes. Electr. J. 2016;29(7):42-49 DOI: 10.1016/j.tej.2016.08.006.
- Shao Y, Tang T, Yi J, Wang A. Analysis and lessons of blackout in Turkey power grid on March 31. AEPS. 2016;40(23):9-14 DOI: 10.7500/AEPS20160412004.
- Coletta T, Jacquod P.} Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids. Phys. Rev. E. 2016;93(3):032222 DOI: 10.1103/PhysRevE.93.032222.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. A new scenario for Braess’s paradox in power grids. Chaos. 2023;32(11):113116 DOI: 10.1063/5.0093980.
- Schafer B, Pesch T, Manik D, Gollenstede J, Lin G, Beck HP, Witthaut D, Timme M. Understanding Braess’ paradox in power grids. Nat. Commun. 2022;13(1):5396. 10.1038/s41467-022-32917-6.
- Sangjoon P, Kim CH, Kahng B. Optimal location of reinforced inertia to stabilize power grids. Chaos, Solitons and Fractals. 2025;199(2):116768 DOI: 10.1016/j.chaos.2025.116768.
- Klinshov VV, Nekorkin VI, Kurths J. Stability threshold approach for complex dynamical systems. New J. Phys. 2015;18(1):013004 DOI: 10.1088/1367-2630/18/1/013004.
- Mitra C, Kittel T, Choudhary A, Kurths J, Donner RV. Recovery time after localized perturbations in complex dynamical networks. New J. Phys. 2017;19(10):103004. 10.1088/1367-2630/aa7fab.
- Mitra C, Kittel T, Choudhary A, Sinha S, Kurths J, Donner RV. Multiple-node basin stability in complex dynamical networks. Phys. Rev. E. 2017;95(3):032317. 10.1103/PhysRevE.95.032317.
- Wolff MF, Lind PG, Maass P. Power grid stability under perturbation of single nodes: Effects of heterogeneity and internal nodes. Chaos. 2018;28(10):103120 DOI: 10.1063/1.5040689.
- Klinshov VV, Kirillov S, Kurths J, Nekorkin VI. Interval stability for complex systems. New J. Phys. 2018;20(4):043040 DOI: 10.1088/1367-2630/aab5e6.
- Halekotte L, Feudel U. Minimal fatal shocks in multistable complex networks. Sci. Rep. 2020;10(1):11783 DOI: 10.1038/s41598-020-68805-6.
- Halekotte L, Vanselow A, Feudel U. Transient chaos enforces uncertainty in the british power grid. J. Phys. Complex. 2021;2(3):035015 DOI: 10.1088/2632-072X/ac080f.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Bistability of operating modes and their switching in a three-machine power grid. Chaos. 2023;33(10):103129 DOI: 10.1063/5.0165779.
- Gambuzza LV, Buscarino A, Fortuna L, Porfiri M, Frasca M. Analysis of dynamical robustness to noise in power grids. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2017;7(3):413-421 DOI: 10.1109/JETCAS.2017.2649598.
- Schmietendorf K, Peinke J, Kamps O. The impact of turbulent renewable energy production on power grid stability and quality. Eur. Phys. J. B. 2017;90:222 DOI: 10.1140/epjb/e2017-80352-8.
- Tumash L, Olmi S, Scholl E. Effect of disorder and noise in shaping the dynamics of power grids. EPL. 2018;123:20001 DOI: 10.1209/0295-5075/123/20001.
- Haehne H, Schmietendorf K, Peinke J, Kettemann S, Tamrakar S. Propagation of wind-power-induced fluctuations in power grids. Phys. Rev. E. 2019;99:050301. 10.1103/PhysRevE.99.050301.
- Arinushkin PA, Kupriyanov VD, Vadivasova TE. Influence of Gaussian noise and Levy noise on the phase dynamics of the ensemble of Kuramoto-like oscillators of first and second order // Izvestiya VUZ. Applied Nonlinear Dynamics. 2025;33(3):289-306. 10.18500/0869-6632-00314510.18500/0869-6632-003145.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Multistability of synchronous modes in a multimachi-ne power grid with a common load and their global and non-local stability. Izvestiya VUZ. Applied Nonlinear Dynamics. 2025;33(1):38-68 DOI: 10.18500/0869-6632-003128.
- Kalentionok EV. Electric Power Systems Stability. Minsk: Technoperspectiva; 2008. 375 p.(in Russian).
- Tricomi F. Integrazione di un’ equazione differenziale presentatasi in elettrotecnica. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 2. 1933;2(1):1-20.
- Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. Oxford: Pergamon; 1966. 848 p.
- Nekorkin VI. Introduction to Nonlinear Dynamics of Oscillations and Waves. М.: Fizmatlit; 2024. 352 p. (in Russian).
- Barbashin EA. Lyapunov Functions. M.: Nauka; 1979. 240 p. (in Russian).
- 389 reads