ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Adilova A. B., Ryskin N. M. Synchronization of oscillators with hard excitation coupled with delay Part 1. Phase approximation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 1, pp. 42-56. DOI: 10.18500/0869-6632-003080, EDN: UZXLNV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Synchronization of oscillators with hard excitation coupled with delay Part 1. Phase approximation

Adilova Asel Bauyrzhanovna, Saratov State University
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

Aim of this work is to develop the theory of mutual synchronization of two oscillators with hard excitation associated with a delay. Taking into account the delay of a coupling signal is necessary, in particular, when analyzing synchronization at microwave frequencies, when the distance between the oscillators is large compared to the wavelength.

Methods. Theoretical analysis is carried out under the assumption that the delay time is small compared to the characteristic time for the oscillations. The phase approximation is used when the frequency mismatch and the coupling parameter are considered small.

Results. Taking into account the change in oscillation amplitudes up to first-order terms in the coupling parameter, a generalized Adler equation for the phase difference of the oscillators is obtained, which takes into account the combined type of the coupling (dissipative and conservative coupling) and non-isochronism. The conditions for saddle-node bifurcations are found and the stability of various fixed points of the system is analyzed. The boundaries of the domains of in-phase and anti-phase synchronization are plotted on the plane of the parameters “frequency mismatch – coupling parameter”.

Conclusion. It is shown that, depending on the control parameters (non-isochronism parameter, excitation parameter, phase advance of the coupling signal), the system exhibits behavior typical of either dissipative or conservative coupling. The obtained formulas allow for trace the transition from one type of coupling to another when varying the control parameters.

The study was supported by a grant from the Russian Science Foundation No. 22-72-0010
  1. Rabinovich MI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. Moscow: Nauka; 1984. 432 p. (in Russian).
  2. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. New York: Cambridge University Press; 2001. 432 p. DOI: 10.1017/CBO9780511755743.
  3. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2005. 292 p. (in Russian).
  4. Balanov A, Janson N, Postnov D, Sosnovtseva O. Synchronization: From Simple to Complex. Berlin: Springer; 2009. 426 p. DOI: 10.1007/978-3-540-72128-4.
  5. Kuznetsov AP, Emelianova YP, Sataev IR, Turukina LV. Synchronization in Tasks. Saratov: Publishing Center «Nauka»; 2010. 256 p. (in Russian). 
  6. Zhang J, Zhang D, Fan Y, He J, Ge X, Zhang X, Ju J, Xun T. Progress in narrowband high-power microwave sources. Phys. Plasmas. 2020;27(1):010501. DOI: 10.1063/1.5126271.
  7. Benford J, Sze H, Woo W, Smith RR, Harteneck B. Phase locking of relativistic magnetrons. Phys. Rev. Lett. 1989;62(8):969–971. DOI: 10.1103/PhysRevLett.62.969.
  8. Cruz EJ, Hoff BW, Pengvanich P, Lau YY, Gilgenbach RM, Luginsland JW. Experiments on peer-to-peer locking of magnetrons. Appl. Phys. Lett. 2009;95(19):191503. DOI: 10.1063/1.3262970.
  9. Sze H, Price D, Harteneck B. Phase locking of two strongly coupled vircators. J. Appl. Phys. 1990;67(5):2278–2282. DOI: 10.1063/1.345521.
  10. Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R, Sze H. Phase locking of high-power microwave oscillators. J. Appl. Phys. 1989;65(2):861–866. DOI: 10.1063/1.343079.
  11. Levine JS, Aiello N, Benford J, Harteneck B. Design and operation of a module of phase-locked relativistic magnetrons. J. Appl. Phys. 1991;70(5):2838–2848. DOI: 10.1063/1.349347.
  12. Adilova AB, Ryskin NM. Study of synchronization in the system of two delay-coupled gyrotrons using a modified quasilinear model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(6): 68–81 (in Russian). DOI: 10.18500/0869-6632-2018-26-6-68-81.
  13. Adilova AB, Ryskin NM. Influence of the delay on mutual synchronization of two coupled gyrotrons. Radiophysics and Quantum Electronics. 2021;63(9–10):703–715. DOI: 10.1007/s11141- 021-10091-x.
  14. Thumm MKA, Denisov GG, Sakamoto K, Tran MQ. High-power gyrotrons for electron cyclotron heating and current drive. Nucl. Fusion. 2019;59(7):073001. DOI: 10.1088/1741-4326/ab2005.
  15. Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators. Physica D. 2004;189(1–2):8–30. DOI: 10.1016/j.physd.2003.09.035.
  16. Kuznetsov AP, Stankevich NV, Turukina LV. Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues. Physica D. 2009;238(14):1203–1215. DOI: 10.1016/j.physd.2009.04.001.
  17. Usacheva SA, Ryskin NM. Phase locking of two limit cycle  oscillators with delay coupling. Chaos. 2014;24(2):023123. DOI: 10.1063/1.4881837.
  18. Adilova AB, Gerasimova SA, Ryskin NM. Bifurcation analysis of mutual synchronization of two oscillators coupled with delay. Russian Journal of Nonlinear Dynamics. 2017;13(1):3–12 (in Russian). DOI: 10.20537/nd1701001.
  19. Adilova AB, Balakin MI, Gerasimova SA, Ryskin NM. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators. Chaos. 2021;31(11):113103. DOI: 10.1063/5.0065670.
  20. Nusinovich GS. Introduction to the Physics of Gyrotrons. Baltimore: Johns Hopkins University Press; 2004. 352 p. DOI: 10.1353/book.62236.
  21. Yakunina KA, Kuznetsov AP, Ryskin NM. Injection locking of an electronic maser in the hard excitation mode. Phys. Plasmas. 2015;22(11):113107. DOI: 10.1063/1.4935847.
  22. Kuznetsov AP, Sataev IR, Trubetskov DI, Seliverstova ES. Amazing Robert Adler. Adler’s tube, Adler’s equation, and more. Izvestiya VUZ. Applied Nonlinear Dynamics. 2015;23(3):3–26 (in Russian). DOI: 10.18500/0869-6632-2015-23-3-3-26.
Available online: