ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Koronovskii A. A., Ponomarenko V. I., Trubetskov D. I. The dynamics of maps with the threshold type of coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 2, pp. 63-71. DOI: 10.18500/0869-6632-1997-5-2-63-71

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

The dynamics of maps with the threshold type of coupling

Autors: 
Koronovskii Aleksei Aleksandrovich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Trubetskov Dmitriy Ivanovich, Saratov State University
Abstract: 

This article deals with the system of logistic maps with the radically new coupling type. The behaviour of this system differs radically from the behaviour of the logistic maps with the traditional coupling types. The investigation of these systems has been carried out both numerically and with the help of the radio—engineering experiment. We have obtained two-parameter regimes maps оп the control parameters plane.

Key words: 
Acknowledgments: 
The work was supported by the RFBR, grant N 96-02-16753.
Reference: 
  1. Kaneko K. Theory and Aplications of Coupled Map Lattices. Chichester: Wiley; 1993. 192 p.
  2. Sharkovskii AN, Kolyada SF, Sivak AG, Fedorenko VV. Dynamics of One-Dimensional Mappings. Kiev: Naukova Dumka; 1989. 216 p. (in Russian).
  3. Smit JM. Models in Ecology. Cambridge: Cambridge University is Press; 1978. 160 p.
  4. Kazuhiro S, Takashi А. Numerical study on а coupled— logistic map as а simple model for а predator—prey system. J. Phys. Soc. Jpn. 1990;59(4):1184-1198.
  5. Allen RGD. Mathematical Economics. London: Macmillan; 1956. 768 p.
  6. Kuznetsov АP, Kuznetsov SP. Critical dynamics of one-dimensional mappings. Part I Feigenbaum’s scenario. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(1):15-33. (in Russian).
  7. Berge Р, Pomeau Y, Vidal CH. Order Within Chaos. N.Y.: Wiley; 1986. 329 p.
  8. Korsch HJ, Jodl H—J. Chaos: а program collection for the PC. Berlin: Springer; 1994. 341 p. DOI: 10.1007/978-3-540-74867-0.
  9. Jetschke С. Mathematik der Selbstorganisation: Qualitative Theorie nichtlinearer dynamischer Systeme und gleichgewichtsferner Strukturen in Physik, Chemie und Biologie. Berlin: Vieweg; 1989. 333 p. DOI: 10.1007/978-3-322-85918-1.
  10. Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev ЕP. Multistability and chaos in a closed chain of elements with doubling of the period: physical and numerical experiment. In: Lectures on Microwave Electronics and Radiophysics. X School-Seminar. Vol. 2. Saratov: College; 1996. P. 51.
  11. Rodriguez-Vazquez A, Huertas JL, Rueda А, Perez-Verdu B, Chua LО. Proc. IEEE. 1987;75(8):1090-1106. DOI: 10.1109/PROC.1987.13852.
  12. Andrushkevich AV, Kipchatov AA, Krasichkov LV, Koronovskii АА. Two-parameter experimental investigation of co-existing oscillation modes in torus breakdown. Radiophys. Quantum Electron. 1995;38(11):780-785. DOI: 10.1007/BF01047078.
  13. Weidlich W. Physics and social science — the approach of synergetics. Phys. Rep. 1991;204(1):1-163. DOI: 10.1016/0370-1573(91)90024-G.
  14. Koronovskii AA, Trubetskov DI. Nonlinear Dynamics in Action: How the Ideas of Nonlinear Dynamics Penetrate the Environment, Economics and Social Sciences. Saratov: College; 1995. 320 p. (in Russian).
Received: 
27.12.1996
Accepted: 
21.03.1997
Published: 
17.07.1997