Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Павлов А. Н. Детектирование информационных сигналов на основе реконструкции динамических систем и дискретного вейвлет-преобразования // Известия вузов. ПНД. 2008. Т. 16, вып. 6. С. 3-17. DOI: 10.18500/0869-6632-2008-16-6-3-17

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 283)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
517.9

Детектирование информационных сигналов на основе реконструкции динамических систем и дискретного вейвлет-преобразования

Авторы: 
Павлов Алексей Николаевич, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

Предлагается метод выделения передаваемых сообщений из хаотического несущего сигнала на основе сочетания техники реконструкции динамических систем и дискретного вейвлет-преобразования. Показано, что применение дискретных вейвлетов позволяет существенно повысить помехоустойчивость алгоритма детектирования, использующего принцип реконструкции.

Ключевые слова: 
Список источников: 
  1. Cuomo K.M., Oppenheim A.V. Circuit implementation of synchronized chaos with applications to communications // Phys. Rev. Lett. 1993. Vol. 71. P. 65.
  2. Kocarev L., Halle K.S., Eckert K., Chua L.O., Parlitz U. Experimental demonstration of secure communications via chaotic synchronization // Int. J. Bifurcation Chaos. 1992. Vol. 2. P. 709.
  3. Wu C.W., Chua L.O. A simple way to synchronize chaotic systems with applications to secure communication systems // Int. J. Bifurcation Chaos. 1993. Vol. 3. P. 1619.
  4. Parlitz U., Chua L.O., Kocarev L., Halle K.S., Shang A. Transmission of digital signals by chaotic synchronization // Int. J. Bifurcation Chaos. 1992. Vol. 2. P. 973.
  5. Cuomo K.M., Oppenheim A.V., Strogatz S.H. Synchronization of Lorenz-based chaotic circuits with application to communications // IEEE Trans. Circuits Syst. 1993. Vol. 40. P. 626.
  6. Dedieu H., Kennedy M.P., Hasler M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuit // IEEE Trans. Circuits Syst. 1993. Vol. 40. P. 634.
  7. Parlitz U. Estimating model parameters from time series by autosynchronization // Phys. Rev. Lett. 1996. Vol. 76. P. 1232.
  8. Parlitz U., Kocarev L. Multichannel communication using autosynchronization // Int. J. Bifurcation Chaos. 1996. Vol. 6. P. 581.
  9. Дмитриев А.С., Панас А.И. Динамический хаос. Новые носители информации для систем связи. М: Физматлит, 2002.
  10. Starkov S.O., Yemetz S.V. Digital communication systems, using chaos // Proc. Int. Conf. Control of Oscillations and Chaos. St.Peterburg, 1997. Vol. 2. P. 207.
  11. Dmitriev A.S., Kyarginsky B.Ye., Panas A.I., Starkov S.O. Experiments on ultra wideband direct chaotic information transmission in microwave band // Int. J. Bifurcation and Chaos. 2003. Vol. 13. P. 1495.
  12. Короновский А.А., Москаленко О.И., Попов П.В., Храмов А.Е. Способ скрытой передачи информации, основанный на явлении обобщенной синхронизации // Известия РАН. Серия физическая. 2008. Т. 72, No 1. C. 143.
  13. Короновский А.А., Москаленко О.И., Попов П.В., Храмов А.Е. Способ секретной передачи информации // Патент на изобретение No. 2295835. Москва: ФИПС, 2007.
  14. Anishchenko V.S., Pavlov A.N., Janson N.B. Global reconstruction in the presence of a priori information // Chaos, Solitons and Fractals. 1998. Vol. 9. P. 1267.
  15. Janson N.B., Pavlov A.N., Anishchenko V.S. // Chaos and its reconstruction / Edited by G. Gouesbet, S. Meunier-Guttin-Cluzel. New York: Novascience publishers, 2003. P. 287.
  16. Anishchenko V.S., Pavlov A.N. Global reconstruction in application to multichannel communication // Phys. Rev. E. 1998. Vol. 57. P. 2455.
  17. Анищенко В.С., Павлов А.Н., Янсон Н.Б. Реконструкция динамических систем в приложении к решению задачи защиты информации // Журнал технической физики. 1998. No 12. С. 1.
  18. Gribkov D.A., Gribkova V.V, Kuznetsov Yu.I., Rzhanov A.G. Global dynamical modeling of time series and application to restoration of broadband signal characteristics // Chaotic, fractal and nonlinear signal processing / Edited R.A. Katz. Mystic, Juli, 1995. P. 181. (AIP Conference Proceedings 375. New York: AIP Press).
  19. Грибков Д.А., Грибкова В.В., Кузнецов Ю.И. Восстановление внешнего воздействия по реализации одной переменной автостохастической системы // Вестн. Моск. ун-та. Сер. 3, Физика, Астрономия. 1995. Т. 36, No 1. C. 76.
  20. Bezruchko B.P., Smirnov D.A. Constructing noautonomous differential equations from experimental time series // Phys. Rev. E. 2001. Vol. 63. P. 016207.
  21. Bezruchko B.P., Dikanev T.V., Smirnov D.A. Role of transient processes for reconstruction of model equations from time series // Phys. Rev. E. 2001. Vol. 64. P. 036210.
  22. Безручко Б.П., Смирнов Д.А., Сысоев И.В., Селезнев Е.П. Реконструкция моделей неавтономных систем с дискретным спектром воздействия // Письма в ЖТФ. 2003. No 19. С. 69.
  23. Anishchenko V.S., Astakhov V.V., Neiman A.B., Vadivasova T.E. and Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Berlin, Heidelberg: Springer, 2007.
  24. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. T. 166. С. 1145.
  25. Daubechies I. Ten Lectures on Wavelets. Philadelphie: S.I.A.M., 1992.
  26. Meyer Y. Wavelets: Algorithms and Applications. Philadelphie: S.I.A.M., 1993.
  27. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их применение // Успехи физических наук. 2001. T. 171. С. 465.
Поступила в редакцию: 
13.03.2008
Принята к публикации: 
13.03.2008
Опубликована: 
27.02.2009
Краткое содержание:
(загрузок: 67)