Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Измайлов И. В., Лячин А. В., Пойзнер Б. Н., Шергин Д. А. Моделирование поведения нелинейного фазового набега поля в кольцевом интерферометре: случай двухчастотного воздействия //Известия вузов. ПНД. 2005. Т. 13, вып. 1. С. 137-151. DOI: https://doi.org/10.18500/0869-6632-2005-13-1-137-151

Язык публикации: 
русский

Моделирование поведения нелинейного фазового набега поля в кольцевом интерферометре: случай двухчастотного воздействия

Авторы: 
Измайлов Игорь Валерьевич, Томский национально исследовательский государственный университет
Лячин Александр Владимирович, Томский национально исследовательский государственный университет
Пойзнер Борис Николаевич, Томский национально исследовательский государственный университет
Шергин Денис Александрович, Томский национально исследовательский государственный университет
Аннотация: 

Построены семейства инициально-финальных отображений, линий бифуркаций, карт ляпуновских характеристических показателей и фрактальной размерности D0 для модели динамики нелинейного фазового набега одно- и двухчастотного поля в нелинейном кольцевом интерферометре. Выяснено влияние структуры спектра двухчастотного излучения на строение указанных карт. Предложены и осуществлены приемы количественного анализа карт. Сопоставлены два способа описания динамики нелинейного фазового набега в нелинейном кольцевом интерферометре: с помощью обыкновенных дифференциальных уравнений и дискретного отображения. Указано на особенность пространственного детерминированного хаоса как режима, устойчивого к изменению начальных условий, но не устойчивого к вариациям параметров модели.

Ключевые слова: 
DOI: 
10.18500/0869-6632-2005-13-1-137-151
Библиографический список: 

1. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by ring cavity system // Opt. Comm. 1979. Vol. 30, No 2. P. 257-260. 2. Ахманов С.А., Воронцов М.А. Нестабильности и структуры в когерентных нелинейно-оптических системах, охваченных двумерной обратной связью // Нелинейные волны: динамика и эволюция: Сб. ст. М.: Наука, 1989. С. 228-237. 3. Розанов Н.Н. Оптическая бистабильность и гистерезис в распределенных нелинейных системах. М.: Наука, 1997. 336 с. 4. Измайлов И.В., Магазинников А.Л., Пойзнер Б.Н. Моделирование процессов в кольцевом интерферометре с нелинейностью, запаздыванием и диффузией при немонохроматическом излучении // Изв. вузов. Физика. 2000, No 2. С. 29-35. 5. Балякин А.А., Рыскин Н.М. Переход к хаосу в кольцевом нелинейном резонаторе при возбуждении внешним многочастотным сигналом // Изв. РАН. Сер физ. 2001. Т. 65, No 12. C. 1741-1744. 6. Балякин А.А. Исследование хаотической динамики кольцевого нелинейного резонатора при двухчастотном внешнем воздействии // Изв. вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 4-5. C. 3-15. 7. Дмитриев А.С. Динамический хаос как носитель информации // Новое в синергетике: Взгляд в третье тысячелетие. М. Наука, 2002. С. 82-122. 8. Измайлов И.В., Пойзнер Б.Н. Варианты реализации нелинейно-оптического устройства скрытой передачи информации // Оптика атмосферы и океана. 2001. Т. 14, No 2. С. 1074-1086. 9. Измайлов И.В., Лячин А.В., Пойзнер Б.Н., Шергин Д.А. Пространственный детерминированный хаос и переход от обыкновенных дифференциальных уравнений к отображениям // Изв. вузов. Прикладная нелинейная динамика. 2004. Т. 13, No 1-2. С. 123. 10. Шергин Д.А., Измайлов И.В. Дискретные отображения как средство описания детерминированного пространственного хаоса // Сб. тез. 9-й Всерос. науч. конф. студентов-физиков и молодых ученых: В 2-х т. 2003. Екатеринбург – Красноярск: АСФ России, 2003. Т. 2. С. 90-93. 11. Шергин Д.А., Измайлов И.В., Пойзнер Б.Н. Дискретные отображения как язык описания пространственного детерминированного хаоса // Современные проблемы физики и высокие технологии: Матер. Междунар. конф. (29 сентября - 4 октября 2003 г., Томск). Томск: Изд-во НТЛ, 2003. С. 186-189. 12. Измайлов И.В., Раводин. В.О. Влияние нелинейности и запаздывания в кольцевом интерферометре на бифуркации (расчет и моделирование) / Ред. журн. «Изв. вузов. Физика». Томск, 1998. 34 с. Деп. в ВИHИТИ 30.09.98, No 2882-В98. (Аннотация опубликована в журнале Изв. вузов. Физика, 1999, No 1, с. 126). 13. Шергин Д.А., Измайлов И.В. Нелинейный кольцевой интерферометр через призму показателей Ляпунова для дискретного отображения // Оптика-2003. Труды третьей международной конференции молодых ученых и специалистов «Оптика-2003». Санкт-Петербург, 20-23 октября 2003 / Под ред. проф. С.А. Козлова. СПб: СПбГУ ИТМО, 2003. С. 104-105. 14. Кузнецов С.П. Динамический хаос. Курс лекций. Учебное пособие для студентов вузов, обучающихся по физическим специальностям. М.: Физматлит, 2001. 296 с. 15. Измайлов И.В., Пойзнер Б.Н., Раводин В.О. Модель взаимодействия двух научных направлений, одно из которых или оба «затухающие», с учетом ограничения роста достижений и запаздывания // Изв. вузов. Прикладная нелинейная динамика. 2001. Т. 9, No 4-5. С. 119-139. 16. Izmailov I.V., Poizner B.N., Shergin D.A. Processes in ring interferometer: a problem of description by discrete maps // The 6th International Conference «Atomic and Molecular Pulsed Lasers» Conference Proceedings. Tomsk, Institute of Atmospheric Optics SB RAS, 2003. P. 98.  

Краткое содержание: 
Полный текст в формате PDF(Ru):