Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


бифуркации

Уравнения с нелинейностями дислокаций и Ферми–Пасты–Улама

Тема и цель исследования. Исследуется класс уравнений Ферми–Пасты–Улама и уравнений, описывающих дислокации. Эти уравнения, являясь ярким представителем интегрируемых уравнений, представляют интерес как в теоретических построениях, так и в прикладных исследованиях. Исследуемые модели. В настоящей работе рассматривается модель, объединяющая эти два уравнения, для нее исследуются локальные динамические свойства решений.

УРАВНЕНИЯ С НЕЛИНЕЙНОСТЯМИ ДИСЛОКАЦИЙ И ФЕРМИ-ПАСТА-УЛАМА

Тема и цель исследования. Исследуется класс уравнений Ферми-Паста-Улама и уравнений, описывающих дислокации. Этим уравнениям посвящено большое число работ. Эти уравнения представляют определенный интерес и в прикладном смысле, и в теоретических исследованиях, являсь ярким представителем интегрируемых уравнений. Исследуемые модели. В предыдущей работе была рассмотрена модель, объединяющая эти два уравнения и изучен ряд вопросов, касающихся интегрируемости по Пенлеве её решений.

Бифуркации однопараметрических семейств стационарных режимов в модели фильтрационной конвекции

Представлены результаты численного исследования бифуркаций однопараметрических семейств стационарных режимов в задаче плоской фильтрационной конвекции. Для аппроксимации уравнений в частных производных используется метод Галеркина. В силу косимметрии в системе существуют кривые равновесий со скрытым параметром. Описан алгоритм вычисления таких кривых, который позволяет анализировать системы с неизолированными решениями.

Нелинейные эффекты в автогенераторной системе с частотно-фазовым управлением

Исследованы режимы динамического поведения и нелинейные явления в моделях системы с частотно-фазовым управлением в случае периодической нелинейной характеристики частотного дискриминатора. Определены условия синхронизации, выяснено, что в системе может реализоваться множество разнообразных (как периодических, так и хаотических) несинхронных режимов. Рассмотрены особенности динамики системы, обусловленные параметрами, характеризующими степень влияния цепи частотного управления.

Бифуркации трехмерных и четырехмерных отображений: универсальные свойства

Подход, в рамках которого картина бифуркаций дискретных отображений рассматривается в пространстве инвариантов матрицы возмущений (матрицы Якоби), распространен на случай трех и четырех измерений. Выявлена картина поверхностей, линий и точек бифуркаций в этом случае, которая является универсальной для всех отображений. Представлены примеры отображений, параметры которых регулируются непосредственно инвариантами матрицы Якоби.

Нелинейная динамика кольца из трех фазовых систем

Исследуется нелинейная динамика ансамбля, состоящего из трех фазоуправляемых генераторов, объединенных в кольцо. Путем численного моделирования, основанного на методах теории колебаний, исследуются режимы коллективного поведения генераторов ансамбля, в пространстве параметров выделяются области существования синхронных и квазисинхронных режимов, анализируются перестройки режимов на границах выделенных областей.  

Синхронизация и многочастотная квазипериодичность в динамике связанных осцилляторов

Обсуждается динамика ансамблей осцилляторов, содержащих небольшое количество элементов. Анализируются возможные типы режимов, особенности бифуркаций регулярных и квазипериодических аттракторов. С помощью метода карт ляпуновских показателей выявлена картина вложения квазипериодических режимов разной размерности в пространство параметров. Сравнивается динамика ансамблей осцилляторов ван дер Поля и фазовых осцилляторов.  

Регулярная и хаотическая динамика двухкольцевой системы фазовой синхронизации часть 1 динамика частотно-фазовой системы с одинаковыми фильтрами первого порядка в цепях управления

Изложены результаты исследования режимов динамического поведения автогенераторной системы с частотно-фазовым управлением при использовании инверсно включенного многочастотного дискриминатора в цепи частотного управления в случае одинаковых фильтров первого порядка в цепях фазового и частотного управления. Исследование проведено на основе математической модели системы с одной степенью свободы с применением качественно-численных методов нелинейной динамики.

Самоорганизация и бифуркации динамической системы обработки металлов резанием

Рассматриваются проблемы нелинейной динамики процессов обработки материалов резанием. На примере процесса точения предлагается математическая модель динамической системы, учитывающая динамическую связь, формируемую процессом резания.

Влияние изгибных деформаций инструмента на самоорганизацию и бифуркации динамической системы резания металлов

В статье рассматривается случай, когда изгибные деформационные смещения инструмента не являются величинами малыми. Такая ситуация характерна, например, для процесса растачивания глубоких отверстий. Борштанга в этом случае имеет малые значения изгибной жесткости. В этом случае за счет уменьшения переднего угла режущего инструмента наблюдается увеличение сил при возрастании деформационных смещений в направлении скорости резания. Тем самым формируется положительная обратная связь, которая принципиально изменяет динамику процесса резания.

Страницы