Для цитирования:
Кузнецов А. П., Потапова А. Ю. Особенности сложной динамики нелинейных неавтономных осцилляторов с катастрофами Тома // Известия вузов. ПНД. 2000. Т. 8, вып. 6. С. 94-120. DOI: 10.18500/0869-6632-2000-8-6-94-120
Особенности сложной динамики нелинейных неавтономных осцилляторов с катастрофами Тома
Проведен обзор работ, посвященных нелинейным осцилляторам. Предложена классификация осцилляторов по схеме теории катастроф, позволяющая описывать динамику различных осцилляторов с потенциальной функцией в виде полинома при помощи одного модельного уравнения. Для осцилляторов с убегающими на бесконечность решениями установлены области характерных режимов в пространстве параметров, проиллюстрированные бассейнами притяжений. Для осцилляторов с потенциалами в виде полинома n-й степени, где n- четное целое число больше двух, описана эволюция карт режимов, содержащих типичным образом определенные композиции бифуркаций crossroad агеа и spring агеа. Изучено влияние повышения степени нелинейности осциллятора на развитие бифуркаций и кризисов.
- Duffing G. Erzwungene Schwingungen bei vernderlicher. Eigenfrequenz und ihre technische Bedeutung. Braunschweig: Vieweg; 1918. 134 p. (in German).
- Андронов А.А., Леонтович E.А., Гордон И.И., Майер А.Г. Теория бифуркаций динамических систем на плоскости. М.: Наука, 1967.
- Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. M.: Наука, 1987.
- Неймарк Ю.И. Метод точечных отображений в теории нелинейных колебаний. М.: Наука, 1972.
- Ланда П.С. Нелинейные колебания и волны. М.: Наука, 1997.
- Баталова З.C., Неймарк Ю.И. Oб одной динамической системе с гомоклинической структурой// Изв. вузов. Радиофизика. 1972. № 11.
- Белюстина Л.Н., Белых В.Н. O глобальной структуре разбиения фазового пространства одной неавтономной системы // Дифференциальные уравнения. 1973. Т. 9, № 4. С. 595.
- Thompson JMT, Rainey RCT, Soliman MS. Mechanics оf ship capsize under direct and parametric wave excitation. Phil. Trans. R. Soc. Lond. А. 1992;338(1651):471-490. DOI: 10.1098/rsta.1992.0015.
- Thompson JMT, Soliman MS. Fractal control boundaries оf driven oscillators and their relevance to safe engineering design. Proc. R. Soc. Lond. А. 1990;428(1874):1-13. DOI: 10.1098/rspa.1990.0022.
- Thompson JMT, Soliman MS. Indeterminate jumps to resonance from a tangled saddle—node bifurcation. Proc. R. Soc. Lond. A. 1991;432(1884):101-111. DOI: 10.1098/rspa.1991.0007.
- Thompson JMT. Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. A. 1989;421(1861):195-225. DOI: 10.1098/rspa.1989.0009.
- Thompson JMT, Bishop SR, Leung LM. Fractal basins аnd chaotic bifurcations prior to escape from the potential well. Phys. Lett. А. 1987;121(3):116-120. DOI: 10.1016/0375-9601(87)90403-8.
- Thompson JMT. Chaos and fractal basin boundaries in engineering. In: Tom Mullin, editor. The Nature of Chaos. Oxford: Clarendon Press; 1995. P. 201-221. DOI: 10.1093/oso/9780198539902.003.0009.
- Soliman MS, Thompson JMT. Transient and steady state analysis of capsize phenomena. Appl. Ocean Res. 1991;13(2):82-92. DOI: 10.1016/S0141-1187(05)80065-3.
- Soliman MS, Thompson JMT. Integrity measures quantifying the erosion of smooth аnd fractal basins оf attraction. J. Sound Vib. 1989;135(3):453-475. DOI: 10.1016/0022-460X(89)90699-8.
- Soliman MS, Thompson JMT. Basin organisation prior to а tangled saddle—node bifurcation. Int. J. Bifurc. Chaos. 1991;1(1):107-118. DOI: 10.1142/S0218127491000087.
- Soliman MS, Thompson JMT. Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Phys. Rev. А. 1992;45(6):3425-3431. DOI: 10.1103/PhysRevA.45.3425.
- Soliman MS, Thompson JMT. Indeterminate sub-critical bifurcations in parametric resonance. Proc. R. Soc. Lond. А. 1992;438(1904):511-518. DOI: 10.1098/rspa.1992.0122.
- Soliman MS. Predicting regimes оf indeterminate jumps to resonance by аssessing fractal boundaries in control space. Int. J. Bifurc. Chaos. 1994;4(6):1645-1653. DOI: 10.1142/S0218127494001258.
- Virgin LN. The nonlinear rolling response of а vessel including chaotic motions leading to capsize in regular seas. Appl. Ocean Res. 1986;9(2):89-95. DOI: 10.1016/0141-1187(87)90011-3.
- Kao YH, Huang JC, Gou YS. Routes to chaos in the duffing oscillator with а single potential well. Phys. Lett. А. 1988;131(2):91-97. DOI: 10.1016/0375-9601(88)90662-7.
- Thompson JMT, Stewart HВ. Nonlinear Dynamics and Chaos. New York: Wiley; 1986. 376 p.
- Huberman BA, Crutchfield JP. Chaotic states of anharmonic systems in periodic fields. Phys. Rev. Lett. 1979;43(23):1743-1747. DOI: 10.1103/PhysRevLett.43.1743.
- Herath J, Fesser K. Mode expansions and bifurcations in nonlinear single-well oscillators. Phys. Lett. А. 1987;120(6):265-268. DOI: 10.1016/0375-9601(87)90668-2.
- Holmes C, Holmes P. Second order averaging and bifurcations to subharmonics in duffing‘s equation. J. Sound Vib. 1981;78(2):161-174. DOI: 10.1016/S0022-460X(81)80030-2.
- Novak S, Frehlich RG. Transition to chaos in the Duffing oscillator. Phys. Rev. А. 1982;26(6):3660-3663. DOI: 10.1103/PhysRevA.26.3660.
- Raty R, von Boehm J, Isomaki HM. Absence оf inversion—symmetric limit cycles оf even periods аnd thе chaotic motion оf Duffing’s oscillator. Phys. Lett. А. 1984;103(6-7):289-292. DOI: 10.1016/0375-9601(84)90461-4.
- Raty R, von Boehm J, Isomaki HM. Chaotic motion оf а periodically driven particle in а asymmetric potential well. Phys. Rev. А. 1986;34(5):4310-4315. DOI: 10.1103/PhysRevA.34.4310.
- Swift JW, Wiesenfeld K. Suppression оf period doubling in symmetric systems. Phys. Rev. Lett. 1984;52(9):705-708. DOI: 10.1103/PhysRevLett.52.705.
- Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations оf Vector Fields. New York: Springer; 1983. 462 p. DOI: 10.1007/978-1-4612-1140-2.
- Holmes PJ. Nonlinear oscillator with a strange attractor. Phil. Trans. R. Soc. Lon. А. 1979;292(1394):419-448. DOI: 10.1098/rsta.1979.0068.
- Moon FC. Fractal boundary for chaos in а two—state mechanical oscillator. Phys. Rev. Lett. 1984;53(10):962-964. DOI: 10.1103/PhysRevLett.53.962.
- Moon FC. Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors. J. Appl. Mech. 1980;47(3):638-644. DOI: 10.1115/1.3153746.
- Moon FC, Holmes PJ. A magnetoelastic strange attractor. J. Sound Vib. 1979;65(2):275-296. DOI: 10.1016/0022-460X(79)90520-0.
- Holmes PJ, Moon FC. Strange attractors and chaos in nonlinear mechanics. J. Appl. Mech. 1983;50(4):1021-1032.
- Moon FC, Li GX. Fractal basin boundaries and homoclinic orbits for periodic motions in а two-well potential. Phys. Rev. Lett. 1985;55(14):1439-1442. DOI: 10.1103/PhysRevLett.55.1439.
- Moon FC, Li GX. The fractal dimenshion оf the two-well potential strange attractor. Physica D. 1985;17(1):99-108. DOI: 10.1016/0167-2789(85)90137-X.
- Szemplinska—Stupnicka W, Rudowski J. Steady states in the twin-well potential oscillator: Computer simulations and approximate analytical studies. Chaos. 1993;3(3):375-385. DOI: 10.1063/1.165945.
- Beige H, Diestelhorst M, Forster R, Albers J, Petersson J. Chaos near structural phase transition. Z. Naturforschung А. 1990;45(8):958-964. DOI: 10.1515/zna-1990-0804.
- Englisch V, Lauterborn W. Regular window structure of а double-well Duffing oscillator. Phys. Rev. А. 1991;44(2):916-924. DOI: 10.1103/PhysRevA.44.916.
- Parlitz U. Common dynamical features оf periodically driven strictly dissipative oscillators. Int. J. Bifurc. Chaos. 1991;3(3):703-715. DOI: 10.1142/S0218127493000611.
- Hayashi С, Ueda Y. Behavior оf solutions for certain types of nonlinear differential equations оf the second order. In: Рrос. 5th Int. Conf. Nonlinear Oscillations. Vol. 14. Poznan. 1973. P. 341-351.
- Hayashi С. Nonlinear Oscillations in Physical Systems. New York: McGraw Hill; 1964. 392 p.
- Hayashi C. Selected Papers on Nonlinear Oscillations. Osaka: Nippon Printing and Pub.; 1975. 249 p.
- Hayashi C. Forced Oscillations in Non-linear Systems. Tokyo: Nippon Printing and Pub.; 1953. 164 p.
- Hayashi C, Ueda Y, Kawakami H. Transformation theory аs applied to the solutions of non-linear differential equations оf the second order. Int. J. Non-Linear Mech. 1969;4:235-255.
- Ueda Y, Yoshida S. Attractor—basin phase portraits оf the forced Duffing’s oscillator. In: Proc. European Conf. Circuit Theory Design. Vol. 1.Paris; 1987. P. 281-286.
- Ueda Y. Survey оf regular and chaotic phenomena in the forced Duffing оscillator. Chaos, Solitons аnd Fractals. 1991;1(3):199-231. DOI: 10.1016/0960-0779(91)90032-5.
- Ueda Y, Hayashi С, Akamatsu N. Computer simulation of nonlinear ordinary differential equations and nonperiodic oscillations. Elec. Comm. Japan A. 1973;56(4):27-34.
- Mosekilde Е. Topics in Nonlinear Dynamic. Singapore: World Scientific; 1997. 392 p. DOI: 10.1142/3194.
- Li GX, Moon FC. Criteria for chaos of а three-well potential oscillator with homoclinic and heteroclinic orbits. J. Sound Vib. 1990;136(1):17-34. DOI: 10.1016/0022-460X(90)90934-R.
- Li GX. Chaotic vibrations of a nonlinear system with five equilibrium states. Ithaca: Cornell University; 1984. 216 p.
- Huberman BA, Grutchfield GP, Packard NH. Noise phenomena in Josephson junctions. Appl. Phys. Lett. 1980;37(8):750-752. DOI: 10.1063/1.92020.
- MacDonald АH, Рlischke M. Study оf the driven damped pendulum: Application to Josephson junctions and charge—density—wave systems. Phys. Rev. В. 1983;27(1):201-211. DOI: 10.1103/PhysRevB.27.201.
- Bak Р, Bohr T, Jensen MH. Mode—locking and the transition to chaos in dissipative systems. Phys. Scr. 1984;9:50-58. DOI: 10.1088/0031-8949/1985/T9/007.
- Miracky RF, Clarke J, Koch RH. Chaotic noise observed in а resistively shunted self—resonant Josephson tunnel junction. Phys. Rev. Lett. 1983;50(11):856-859. DOI: 10.1103/PhysRevLett.50.856.
- Yeh WJ, He DR, Kao YH. Fractal dimension and self—similarity of thе devils staircase in а Josephson—junction simulator. Phys. Rev. Lett. 1984;52(6):480-480. DOI: 10.1103/PhysRevLett.52.480.
- Yeh WJ, Kao YH. Intermittency in Josephson junctions. Appl. Phys. Lett. 1983;42:299-301. DOI: 10.1063/1.93886.
- Kao YH, Huang JC, Gou YS. Persistent properties оf crises in а Duffing oscillator. Phys. Rev. A. 1987;35(12):5228-5232. DOI: 10.1103/PhysRevA.35.5228.
- Горяченко В.Д. Элементы теории колебаний. Красноярск: Изд-во Красноярского ун-та. 1995. с. 286.
- Klinker T, Meyer—Ilse W, Lauterborn W. Period doubling and chaotic behavior in а driven Toda oscillator. Phys. Lett. А. 1984;101(8):371-375. DOI: 10.1016/0375-9601(84)90604-2.
- Goldstone JA, Garmire Е. Intinsic optical bistability in nonlinear media. Phys. Rev. Lett. 1984;53(9):910-913. DOI: 10.1103/PhysRevLett.53.910.
- Flytzanis Chr, Tang CL. Light—induced critical behavior in the four—wave interaction in nonlinear systems. Phys. Rev. Lett. 1980;45(6):441-445. DOI: 10.1103/PhysRevLett.45.441.
- Желудев Н.И., Макаров B.A., Матвеева A.B., Свирко Ю.П. Структура хаоса при возбуждении нелинейного осциллятора гармонической внешней силой // Вест. МГУ. Сер. 3. 1984. Т. 25, № 5. С. 106.
- Chui ST, Ма KB. Nature of some chaotic states for Duffing‘s equation. Phys. Rev. А. 1982;26(4):2262-2265. DOI: 10.1103/PhysRevA.26.2262.
- Elgin JN, Forster D, Sraker S. Mechanism for chaos in the duffing equation. Phys. Lett. А. 1983;94(5):195-197. DOI: 10.1016/0375-9601(83)90446-2.
- Крюков Б.И., Середович Г.И. О «странном» поведении решений уравнения Дуффинга // ДАН СССР. 1981. Т. 258, № 2. С. 311.
- Beiersdorfer Р, Wersinger JM, Treve Y. Topology of the invariant manifolds оf period-doubling attractors for some forced nonlinear oscillators. Phys. Lett. А. 1983;96(6):269-272. DOI: 10.1016/0375-9601(83)90177-9.
- Hayashi С. The method оf mapping with reference to the doubly asymptotic structure оf invariant curves. Int. J. Non—Linear Mech. 1980;15(4-5):341-348. DOI: 10.1016/0020-7462(80)90019-0.
- Hayashi C, Abe M, Oshima K, Kawakami H. The method of mapping as applied to the solution for certain types of nonlinear differential equations. In: Proc. Ninth International Conference on Nonlinear Oscillations. Vol. 1. August-September 1981, Kiev, Ukraine. Kiev: Naukova dumka; 1984. P. 40.
- Kawakami H. The bifurcation pattern оf periodic solutions observed in Duffing‘s equation. In: Proc. Ninth International Conference on Nonlinear Oscillations. Vol. 1. August-September 1981, Kiev, Ukraine. Kiev: Naukova dumka; 1984. P. 162.
- Arecchi FT, Lisi Е. Hopping mechanism generating 1/f noise in nonlinear systems. Phys. Rev. Lett. 1982;49(2):94-98. DOI: 10.1103/PhysRevLett.49.94.
- Holmes Р, Whitley D. On the attracting set for Duffing‘s equation. II: A geometrical model for moderate force and damping. Physica D. 1983;7(1-3):111-123.
- Арнольд В.И. Теория катастроф. M.: Изд-во Моск. ун-та, 1983.
- Poston T, Stewart I. Catastrophe Theory and its Applications. London: Pitman; 1978. 491 p.
- Bier M, Bountis TC. Remerging Feigenbaum trees in dynamical systems. Phys. Lett. A. 1984;104(5):239-244. DOI: 10.1016/0375-9601(84)90059-8.
- Chang SJ, Fendley PR. Scaling and universal behavior оn thе bifurcation attractor. Phys. Rev. А. 1986;33(6):4092-4103. DOI: 10.1103/PhysRevA.33.4092.
- Постон T., Стюард И. Теория катастроф и ее применения. М.: Мир, 1980.
- Коmuro M, Tokunaga R, Matsumoto T, Chua L, Hotta А. Global bifurcation analysis оf the double scroll circuit. Int. Int. J. Bifurc. Chaos. 1991;1(1):139-182. DOI: 10.1142/S0218127491000105.
- Scheffczyk C, Parlitz U, Kurz T, Knop W, Lauterborn W. Comparison of bifurcation structures оf driven dissipative nonlinear oscillators. Phys. Rev. А. 1991;43(12):6495-6502. DOI: 10.1103/PhysRevA.43.6495.
- Ringland J, Schell M. Universal geometry in the parameter plane of dissipative dynamical systems. Europhys. Lett. 1990;12(7):595-601. DOI: 10.1209/0295-5075/12/7/004.
- Gallas JАC, Catarina S. Structure of the parameter space of Неnon mар. Phys. Rev. Lett. 1993;70(18):2714-2717. DOI: 10.1103/PhysRevLett.70.2714.
- Gallas JAС. Structure of the parameter space of a ring cavity. Аррl. Phys. B. 1995;60:S203-S213.
- Carcasses J, Mira C, Bosch M, Simo C, Tatjer JC. “Crossroad area — spring area” transition. I: Parameter plane representation. Int. J. Bifurc. Chaos. 1991;1(1):183-196. DOI:10.1142/S0218127491000117.
- Mira C, Carcasses J. On the “crossroad аrеа — saddle area” and “crossroad area — spring area” transitions. IJBC. 1991;1(3):641-655. DOI: 10.1142/S0218127491000464.
- Moon FC. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. New York: Wiley;1987. 309 p.
- Grebogi C, Ott Е, Yorke JA. Chaotic attractors in crisis. Phys. Rev. Lett. 1982;48(22):1507-1510. DOI: 10.1103/PhysRevLett.48.1507.
- Grebogi C, Ott E, Yorke JA. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D. 1983;7(1-3):181-200. DOI: 10.1016/0167-2789(83)90126-4.
- Оtt Е. Chaos in Dynamical Systems. Cambridge: Cambridge University Press; 1993. 277 p.
- 479 просмотров