Для цитирования:
Кузнецов А. П., Новиков Е. В., Савин А. В. Отображения с удвоениями периода с модуляцией управляющего параметра запаздывающим воздействием // Известия вузов. ПНД. 2008. Т. 16, вып. 4. С. 33-48. DOI: 10.18500/0869-6632-2008-16-4-33-64
Отображения с удвоениями периода с модуляцией управляющего параметра запаздывающим воздействием
Показано, что введение модуляции управляющего параметра с использованием запаздывания может рассматриваться как физически мотивированный метод построения двумерных отображений с нефиксированным якобианом. Представлены примеры таких двухпараметрических и трехпараметрического отображений. Получены условия бифуркаций Неймарка–Сакера, удвоения периода и резонанса 1:2. Исследуется устройство пространства параметров методом карт динамических режимов. С его помощью выявлены области квазипериодических режимов и различных синхронных режимов.
- Kuznetsov Yuri A. Elements of applied bifurcation theory. Springer-Verlag, 1998. P. 593.
- Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. C. 356.
- Gonchenko V.S., Kuznetsov Yu.A., Meijer H.G.E. Generalized Henon map and bifur- cations of homoclinic tangencies //Preprint 1296, Department of Mathematics, Utrecht University, 2004. P. 24. http://www.math.uu.nl/publications/preprints/1296.pdf
- Гонченко С.В. Стенькин О.В., Шильников Л.П. О существовании счетного множества устойчивых и неустойчивых инвариантных торов у систем из областей Ньюхауса с гетероклиническими касаниями // Нелинейная динамика. 2006. Т. 2, No 1. С. 3.
- Meijer H.G.E. Codimension 2 bifurcations of iterated maps // Physica D. 2006. Thesis Utrecht University. http://igitur-archive.library.uu.nl/ dissertations/2006-1204-200716/index.htm.
- Pyragas K. Continuous control of chaos by self-controlling feedback // Phys. Rev. A. 1992. Vol. 170. P. 421.
- Богданов Н.С., Кузнецов А.П. «Атлас» карт динамических режимов эталонных моделей нелинейной динамики и радиофизических систем // Изв. вузов. Прикладная нелинейная динамика. 2000. Т. 8, No 1. C. 80.
- Кузнецов А.П., Тюрюкина Л.В. Динамические системы разных классов как модели нелинейного осциллятора с импульсным воздействием // Изв. вузов. Прикладная нелинейная динамика. 2000. T. 8, No 2. С. 31.
- Kuznetsov A.P., Turukina L.V. and Mosekilde E. Dynamical systems of different classes as models of the kicked nonlinear oscillator // Int. J. of Bif. & Chaos. 2001. Vol. 11, No 4. P. 1065.
- Ikeda K., Daido H., Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity // Phys. Rev. 1980. Vol. 45. P. 709.
- Carr Y., Eilbech Y.C. One-dimensional approximations for a quadratic Ikeda map // Phys. Lett. 1984. Vol. A104. P. 59.
- Vallee R., Delisle C., Chrostowski J. Noise versus chaos in an acousto-optic bistability // Phys. Rev. 1984. Vol. A30, No 1. P. 336.
- 1934 просмотра