Для цитирования:
Dikanev T. V., Smirnov D. A., Ponomarenko V. I., Bezruchko B. P. Three subproblems of global model reconstruction from time series and their peculiarities [Диканев Т. В., Смирнов Д. А., Пономаренко В. И., Безручко Б. П. Три подзадачи реконструкции глобальной модели по временным рядам и их особенности] // Известия вузов. ПНД. 2003. Т. 11, вып. 3. С. 165-178. DOI: 10.18500/0869-6632-2003-11-3-165-178
Three subproblems of global model reconstruction from time series and their peculiarities
[Три подзадачи реконструкции глобальной модели по временным рядам и их особенности]
Мы рассматриваем три основные подзадачи глобальной реконструкции динамических моделей по временным рядам: выбор динамических переменных, выбор функций модели и определение параметров модели. Представлены специальные методы для их решения. Обсуждаются их приложения и перспективы дальнейшего развития методов эмпирического моделирования. Данные подходы иллюстрируются в численных и акустических экспериментах.
- Crutchfield J.P. and McNamara B.S. Equations of motion from a data series // Complex Systems. 1987. Vol. 1. P. 417-452.
- Judd K., Mees А.I. On selecting models for nonlinear time series // Physica D. 1995. Vol. 82. P. 426-444.
- McSharry P.E. and Smith L.A. Better nonlinear models from noisy data: Attractors with maximum likelihood // Phys. Rev. Lett. 1999. Vol. 83, № 21. P. 4285-4288.
- Baake E., Baake M., Bock H.J., and Briggs K.M. Fitting ordinary differential equations to chaotic data // Phys. Rev. А. 1992. Vol. 45, № 8. P. 5524-5529.
- Brown R., Rulkov N.F., and Tracy E.R. Modeling and synchronizing chaotic systems from time-series data // Phys. Rev. Е. 1994. Vol. 49, № 5. P. 3784-3800.
- Gouesbet G., Letellier С. Global vector-field approximation by using а multivariate polynomial approximation оп nets // Phys. Rev. Е. 1994. Vol. 49. P. 4955-4972.
- Hegger R., Kantz H., Schmuser F., Diestelhorst M., Kapsch R.-P., and Beige H. Dynamical properties of a ferroelectric capacitors observed through nonlinear time series analysis // Chaos. 1998. Vol. 8, № 3. P. 727-754.
- Janson N.B., Pavlov AN, and Anishchenko V.S. One method for restoring inhomogeneous attractors // Int. J. оf Bifurc. and Chaos. 1998. Vol. 8, № 4. P. 825-833.
- Anishchenko V.S. and Pavlov A.N. Global reconstruction in application to multichannel communication // Phys. Rev. Е. 1998. Vol. 57, № 2. P. 2455-2457.
- Anishchenko V.S., Pavlov A.N., and Janson N.B. Global reconstruction in the presence of a priori information // Chaos, Solitons & Fractals. 1998. Vol. 8. P. 1267-1278.
- Pavlov A.N., Janson N.B., and Anishchenko V.S. Reconstruction оf dynamical systems // Radiotekh. i Electron. 1999. Vol. 44, № 9. P. 1075-1092.
- Аnоsov O.L., Butkovskii O.Ya., and Kravtsov Yu.А. Reconstruction оf dynamical systems from chaotic time series: brief review // Izv. VUZ. Applied Nonlinear Dynamics. 2000. Vol. 8, № 1. P. 29-51.
- Bezruchko B. and Smirnov D. Constructing nonautonomous differential equations from а time series // Phys. Rev. Е. 2001. Vol. 63. 016207.
- Bezruchko B., Dikanev T., and Smirnov D. Role of transient processes for reconstruction оf model equations from time series // Phys. Rev. Е. 2001. Vol. 64. 036210.
- Timmer J., Rust H., Horbelt W., and Voss H.U. Parametric, nonparametric and parametric modelling оf а chaotic circuit time series // Phys. Lett. А. 2000. Vol. 274. P. 123-134.
- Horbelt W., Timmer J., Вunnеr M.J., Meucci R., and Ciofini M. Identifying physical properties of a CO2-laser by dynamical modeling of measured time series // Phys. Rev. E. 2001. Vol. 64. 016222.
- Sauer T., Yorke J.A., and Casdagli М. Embedology // J. Stat. Phys. 1991. Vol. 65, № 3-4. Р. 579-616.
- Le Sceller L., Letellier C., and Gouesbet G. Structure selection for global vector field reconstruction by using the identification of fixed points // Phys. Rev. E. 1999. Vol. 60, № 2. Р. 1600-1606.
- Aguirre L.A., Freitas U.S., Letellier C., Maquet J. Structure-selection techniques applied to continuous-time nonlinear models // Physica D. 2001. Vol. 158. P. 1-18.
- Small M., Judd K. and Mees А. Modeling continuous processes from data // Phys. Rev. E. 2001. Vol. 65. 046704.
- Rosenblum M.G. and Pikovsky A.S. Detecting direction оf coupling in interacting oscillators // Phys. Rev. Е. 2001. Vol. 64. 045202(R).
- Letellier C., Maquet I., Le Sceller L., Gouesbet G., and Aguirre L.A. On the non-equivalence of observables in phase space reconstructions from recorded time series // J. Phys. A: Math. Gen. 1998. Vol. 31. P. 7913-7927.
- Letellier C., Aguirre L.A. Investigating nonlinear dynamics from time series: The influence of symmetries and the choice оf observables // Chaos. 2002. Vol. 12, № 3. P. 549-558.
- Kaplan D.T. Exceptional events as evidence for determinism // Physica D. 1994. Vol. 73. P. 738-748.
- Smirnov D., Bezruchko В. and Seleznev Ye. Choice оf dynamical variables for global reconstruction оf model equations from time series // Phys. Rev. Е. 2002. Vol. 65. 026205.
- Bracic-Lotric M. and Stefanovska А. // Physica А. 2000. Vol. 283. P. 451.
- Janson N.B., Balanov A.G., Anishchenko V.S., McClintock P.V.E. // Phys. Rev. E. 2002. Vol. 65. 036212.
- Arnhold J., Grassberger Р., Lehnertz K., and Elger C.E. // Chaos in Brain? / Eds K. Lehnertz, J. Anhold, P. Grassberger, and C.E. Elger. World Scientific, 2000, p. 325.
- Rodriguez E. еt al. // Nature (London) 1999. Vol. 397. P. 430.
- Andrzejak R.G, Lehnertz K., Mormann F., Rieke C., David P., and Elger C.E. // Phys. Rev. Е. 2001. Vol. 64. 061907.
- Kaplan A.Ya. / Uspekhi Fiziol. Nauk. 1998. Vol. 29(3). Р. 35.
- Smirnov D. and Bezruchko B. Estimation of interaction strength and direction from short and noisy time series // Phys. Rev. E. 2003, to be published.
- 336 просмотров