Для цитирования:
Корнеев И. А., Слепнев А. В., Семенов В. В., Вадивасова Т. Е. Волновые процессы в кольце мемристивно связанных автогенераторов // Известия вузов. ПНД. 2020. Т. 28, вып. 3. С. 324-340. DOI: 10.18500/0869-6632-2020-28-3-324-340
Волновые процессы в кольце мемристивно связанных автогенераторов
Цель. Выявление особенностей динамики и формирования структур в ансамбле генераторов ван дер Поля, вызванных мемристивным характером взаимодействия между его элементами, для двух моделей мемристивных проводимостей: с «идеальной памятью» и реалистичной, предусматривающей «забывание» начального состояния мемристивного элемента через большой промежуток времени. Методы. Методом Рунге–Кутты четвертого порядка проводится численное интегрирование системы уравнений, описывающей исследуемый ансамбль. По результатам интегрирования строятся пространственно-временные диаграммы и мгновенные пространственные профили динамических режимов, полученных при вариации начальных условий и параметров мемристивного элемента. Проводится их анализ. Результаты. Показано, что вид мгновенного пространственного профиля в исследуемом ансамбле в случае мемристоров с «идеальной памятью» непосредственно зависит от выбора начального распределения мемристивных переменных. Причем таким выбором можно добиться сосуществования в системе кластеров с различным поведением. Например, бегущих волн и режима полной синхронизации. Данная особенность пропадает при переходе к «реальному» мемристору. Заключение. Введение мемристивной связи в ансамбль автоколебательных элементов оказывает существенное влияние на его динамику. Система с «идеальными» мемристорами демонстрирует чувствительность к их начальным состояниям, что позволяет управлять динамическим режимом системы и в достаточно широких пределах изменять форму волнового профиля, меняя начальное распределение мемристивных элементов.
- Chua L.O. Memristor–The missing circuit element // IEEE Transactions on circuit theory. 1971. Vol. 1. P. 507–519.
- Chua L.O., Kang S.M. Memristive devices and systems // Proceedings of the IEEE. 1976. Vol. 64, no. 2. P. 209–223.
- Strukov D.B., Snider G.S., Stewart D.R., and Williams R.S. The missing memristor found // Nature. 2008. Vol. 453. P. 80–83.
- Berzina T., Smerieri A., Bernabo M., Pucci A., Ruggeri G., Erokhin V., Fontana M. ´ Optimization of an organic memristor as an adaptive memory element // Journal of Applied Physics. 2009. Vol. 105, № 12. 124515.
- Jeong H.Y. et al. Graphene oxide thin films for flexible nonvolatile memory applications // Nano letters. 2010. Vol. 10, no. 11. P. 4381–4386.
- Chang T., Jo S.-H., Kim K.-H., Sheridan P., Gaba S., Lu W. Synaptic behaviors and modeling of a metal oxide memristive device // Applied physics A. 2011. Vol. 102. P. 857–863.
- Yang Y., Sheridan P., Lu W. Complementary resistive switching in tantalum oxide-based resistive memory devices // Applied Physics Letters. 2012. Vol. 100, no. 20. P. 203–112.
- Strachan J., Torrezan A., Miao F., Pickett M., Yang J., Yi W., Medeiros-Ribeiro G., Williams R. State dynamics and modeling of tantalum oxide memristors // IEEE Transactions on Electron Devices. 2013. Vol. 60, no. 7. P. 2194–2202.
- Kim S., Choi S., Lu W. Comprehensive physical model of dynamic resistive switching in an oxide memristor // ACS Nano. 2014. Vol. 8, no. 3. P. 2369–2376.
- Liu G., Chen Y., Wang C., Zhang W., Li R.-W., and Wang L. Polymer memristor for information storage and neuromorphic applications // Materials Horizons. 2014. Vol. 1, no. 5. P. 489–506.
- Demin V., Erokhin V., Emelyanov A., Battistoni S., Baldi G., Iannotta S., Kashkarov P., and Kovalchuk M. Hardware elementary perceptron based on polyaniline memristive devices // Organic Electronics. 2015. Vol. 25. P. 16–20.
- Erokhina S., Sorokin V., Erokhin V. Polyaniline-based organic memristive device fabricated by layed-by-layed deposition technique // Electronic Materials Letters. 2015. Vol. 11, no. 5. P. 801–805.
- Pershin Y.V., Di Ventra M. Practical approach to programmable analog circuits with memristors // IEEE Transactions on Circuits and Systems I. 2010. Vol. 57. P. 1857–1864.
- Pershin Y.V., Di Ventra M. Memory effects in complex materials and nanoscale systems // Advances in Physics. 2011. Vol. 60. P. 145–227.
- Chew Z., Li L. Printed circuit board based memristor in adaptive lowpass filter // Electronics Letters. 2012. Vol. 48, no. 25. P. 1610–1611.
- Di Ventra M., Pershin Y. The parallel approach // Nature Physics. 2013. Vol. 9, no. 4. P. 200–202.
- Yang J., Strukov D., Stewart D. Memristive devices for computing // Nature Nanotechnology. 2013. Vol. 8, no. 1. P. 13–24.
- Tetzlaff R. Memristor and Memristive Systems. New York: Springer Science & Business Media, 2014.
- Vourkas I., Sirakoulis G.C. Memristor-Based Nanoelectronic Computing Circuits and Architectures. Cham: Springer International Publishing, 2016. Vol. 19.
- Pershin V., Di Ventra M. Experimental demonstration of associative memory with memristive neural networks // Neural networks. 2010. Vol. 23, no. 7. P. 881–886.
- Jo S.H., Chang T., Ebong I., Bhadviya B.B., Mazumder P., Lu W. Nanoscale memristor device as synapse in neuromorphic systems // Nano letters. 2010. Vol. 10, no. 4. P. 1297–1301.
- Wu A. and Zeng Z. Dynamic behaviors of memristor-based recurrent neural networks with timevarying delays // Neural networks. 2012. Vol. 36. P. 1–10.
- Guo Z., Wang J., Yan Z. Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays // Neural Netw. 2013. Vol. 48. P. 158–172.
- Guo Z., Wang J., Yan Z. Attractivity analysis of memristor-based cellular neural networks with time-varying delays // IEEE transactions on neural networks and learning systems. 2014. Vol. 25, no. 4. P. 704–717.
- Zhao H., Li L., Peng H., Kurths J., Xiao J., Yang Y. Anti-synchronization for stochastic memristorbased neural networks with non-modeled dynamics via adaptrive control approach // EPJ B. 2015. Vol. 88, no. 5. P. 1–10.
- Li R., Cao J., Tu Z. Passivity analysis of memristive neural networks with probabilistic timevarying delays // Neurocomputing. 2016. Vol. 191. P. 249–262.
- Itoh M., Chua L.O. Memristor oscillators // International journal of bifurcation and chaos. 2008. Vol. 18. P. 3183–3206.
- Messias M., Nespoli C., Botta V.A. ´ Hopf bifurcation from lines of equilibria without parameters in memristor oscillators // International journal of bifurcation and chaos. 2010. Vol. 20, no. 2. P. 437–450.
- Botta V.A., Nespoli C., Messias M. ´ Mathematical analysis of a third-order memristor-based Chua’s oscillator // Trends in Applied and Computational Mathematics. 2011. Vol. 12, no. 2. P. 91–99.
- Riaza R. Manifolds of equilibria and bifurcations without parameters in memristive circuits // SIAM Journal on Applied Mathematics. 2012. Vol. 72, no. 3. P. 877–896.
- Li Q., Hu S., Tang S., Zeng G. Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation // International Journal of Circuit Theory and Applications. 2014. Vol. 42. P. 1172–1188.
- Semenov V.V., Korneev I.A., Arinushkin P.A., Strelkova G.I., Vadivasova T.E., Anishchenko V.S. Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects // EPJ Special Topics. 2015. Vol. 224, no. 8. P. 1553–1561.
- Korneev I.A., Vadivasova T.E., Semenov V.V. Hard and soft excitation of oscillations in memristorbased oscillators with a line of equilibria // Nonlinear dynamics. 2017. Vol. 89, no. 4. P. 2829–2843.
- Pham V.T., Volos C.K., Vaidyanathan S., Le T.P., Vu V.Y. A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating // Journal of Engineering Science and Technology Review. 2015. Vol. 8. P. 205–214.
- Kengne J., Tabekoung Z.N., Namba V.K., Negou A.N. Periodicity, chaos and multiple attractors in a memristor-based Shinriki‘s circuit // Chaos. 2015. Vol. 25. 103126.
- Fiedler B., Liebscher S., Alexander J. Generic Hopf bifurcation from lines of equilibria without parameters: I. theory // Journal of Differential Equations. 2000. Vol. 167, no. 1. P. 16–35.
- Korneev I.A., Semenov V.V. Andronov-Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria // Chaos. 2017. Vol. 27, no. 8. 081104.
- Lu M., Wang C.N., Ren G.D., et al. Model of electrical activity in a neuron under magnetic flow effect // Nonlinear dynamics. 2016. Vol. 85. P. 1479–1490.
- Ma J., Zhang G., Hayat T., Ren G. Model electrical activity of neuron under electric field // Nonlinear dynamics. 2018. Vol. 92, no. 3. P. 1395–1402.
- Wu F.Q., Wang C.N., Xu Y., et al. Model of electrical activity in cardiac tissue under electromagnetic induction // Scientific reports. 2016. Vol. 6, P. 28.
- Frasca M., Gambuzza L., Buscarino A., Fortuna L. Implementation of adaptive coupling through memristor // Physica Status Solidi. 2014. Vol. 12, no. 1–2. P. 206–210.
- Gambuzza L., Buscarino A., Fortuna L., and Frasca M. Memristor-based adaptive coupling for consensus and synchronization // IEEE Transactions on Circuits and Systems I. 2015. Vol. 62, no. 4. P. 1175–1184.
- Volos Ch.K., Pham V.T., Vaidyanathan S., Kyprianidis I.M., Stouboulos I.N. The case of bidirectionally coupled nonlinear circuits via a memristor. Cham: Springer, 2016. Vol. 635. P. 317–350.
- Ignatov M., Hansen M., Ziegler M., Kohlstedt H. Synchronization of two memristively coupled van der Pol oscillators // Applied Physics Letters. 2016. Vol. 108, no. 8. P. 84–105.
- Xu F., Zhang J., Fang T., Huang Sh., Wang M. Synchronous dynamics in neural system coupled with memristive synapse // Nonlinear Dynamics. 2018. Vol. 92, no. 3. P. 1395–1402.
- Корнеев И.А., Шабалина О.Г., Семенов В.В., Вадивасова Т.Е. Синхронизация автогенераторов, взаимодействующих через мемристор // Известия вузов. ПНД. 2018. Т. 26, № 2. С. 24–40.
- Pham V.T., Buscarino A., Fortuna L., Frasca M. Autowaves in memristive cellular neural networks // International journal of bifurcation and chaos. 2012. Vol. 22, no. 8. P. 1230027.
- Buscarino A., Corradino C., Fortuna L., Frasca M., Chua L. Turing patterns in memristive cellular nonlinear networks // IEEE Transactions on Circuits and Systems I. 2016. Vol. 99. P. 1–9.
- Ma J., Wu F.Q., Hayat T., et al. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media // Physica A. 2017. Vol. 486. P. 508–516.
- Wang C., Lv M., Alsaedi A., Ma J. Synchronization stability and pattern selection in a memristive neuronal network // Chaos. 2017. Vol. 27. P. 113108(1-8).
- Xu F., Zhang J., Jin M., Huang Sh., Fang T. Chimera states and synchronization behavior in multilayer memristive neural networks // Nonlinear Dynamics. 2018. Vol. 94, no. 2. P. 775–783.
- Chen L., Li Ch., Huang T., Chen Y., Wen Sh., Qi J. A synapse memristor model with fogetting effect // Physics Letters A. 2013. Vol. 377. P. 3260–3265.
- Zhou E., Fang L., Yang B. A general method ti describe fogetting effect of memristor // Physics Letters A. 2019. Vol. 383, no. 10, P. 942–948.
- Korneev I.A., Semenov V.V., Vadivasova T.E. Synchronization of periodic self-oscillators interacting via memristor-based coupling // International journal of bifurcation and chaos. 2020. P. 1–8. https://doi.org/S0218127420500935
- 2151 просмотр