Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Реконструкция уравнений

Реконструкция ансамблей связанных систем с запаздыванием по временным рядам

Предложены методы реконструкции модельных дифференциальных уравнений с запаздыванием для ансамблей связанных систем с задержкой по их временным рядам. Эффективность методов продемонстрирована на примере хаотических и периодических временных рядов цепочек диффузионно связанных модельных и экспериментальных систем с запаздыванием для случаев однонаправленной и взаимной связи элементов.  

Восстановление по временным рядам архитектуры связей и параметров элементов в ансамблях связанных осцилляторов с задержкой

Цель. Предложить новый подход к восстановлению архитектуры связей и параметров элементов в ансамблях связанных осцилляторов, описываемых дифференциальными уравнениями первого порядка с запаздыванием, по временным рядам их колебаний. Метод. Метод основан на минимизации целевой функции, характеризующей расстояние между точками реконструируемой нелинейной функции данного элемента, и разделении восстановленных коэффициентов связи на значимые и незначимые. Минимизация целевой функции осуществляется методом наименьших квадратов.

Реконструкция однонаправленно связанных систем с запаздыванием первого порядка по временной реализации ведомой системы

Системы с запаздыванием, в том числе связанные, стали популярными моделями различных физических и биологических объектов. Нередко одна или несколько переменных таких моделей недоступны для прямого измерения, их называют скрытыми. Однако реконструкция моделей по экспериментальным сигналам при наличии скрытых переменных может быть полезна для целей верификации моделей и косвенного измерения.