ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kryukov A. K., Kanakov O. I., Osipov G. V. Synchronization waves in weak-nonlinear oscillatory ensembles. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 1, pp. 13-36. DOI: 10.18500/0869-6632-2009-17-1-13-36

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 335)
Language: 
Russian
Article type: 
Article
UDC: 
621.391.01

Synchronization waves in weak-nonlinear oscillatory ensembles

Autors: 
Kryukov Aleksej Konstantinovich, Lobachevsky State University of Nizhny Novgorod
Kanakov Oleg Igorevich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

Synchronization is studied in ensembles of locally dissipative coupled and conservative coupled weak-nonlinear van der Pol oscillators. In the chain of N elements not less than 2 N−1 different regimes of global synchronization are stable at the same values of parameters. Cluster synchronization is considered as well. Existing of multiple fronts of synchronization switching is shown. These fronts go one through another without of changing or reflections from free boundaries. Effect of alternated inphase – antiphase synchronization is observed, which was found before in numerical simulations.

Reference: 
  1. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge: Cambridge University Press; 2001. 440 p.
  2. Mosekilde E, Maistrenko Yu, Postnov D. Chaotic Synchronization. Applications to Living Systems. Singapore: World Scientific; 2002. 440 p.
  3. Osipov GV, Kurths J, Zhou Ch. Synchronization in Oscillatory Networks. Berlin: Springer; 2007. 372 p.
  4. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, structures and chaos in nonlinear synchronization networks. Singapore: World Scientific; 1994. 246 p.
  5. Osipov GV, Sushchik MM. Synchronized clusters and multistability in arrays of oscillators with different natural frequencies. Phys. Rev. E. 1998;58(6 Suppl.A):7198–7207. DOI: 10.1103/PhysRevE.58.7198.
  6. Aranson IS, Kramer L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 2002;74:99–143. DOI: 10.1103/RevModPhys.74.99.
  7. Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Synchronization of two nonscalar-coupled limit-cycle oscillators. Physica D. 2004;189(1–2):8–30. DOI: 10.1016/J.PHYSD.2003.09.035.
  8. Macleod K, Backer A, Laurent G. Who reads temporal information contained across synchronized and oscillatory spike trains? Nature. 1998;395(6703):693–698. DOI: 10.1038/27201.
  9. Ambiguity in Mind and Nature. Eds Kruse P, Stadler M. New York: Springer-Verlag; 1995. 327 p.
  10. Mensour B, Longtin A. Synchronization of delay-differential equations with application to private communication. Phys. Lett. A. 1998;244(1-3):59–70. DOI: 10.1016/S0375-9601(98)00271-0.
  11. Beuter A, Milton JG, Labrie C, Glass L. Complex motor dynamics and control in multilooped negative feedback systems. Proc. IEEE Systems Man Cybern. 1989;3:899–902. DOI: 10.1109/ICSMC.1989.71426.
Received: 
15.08.2008
Accepted: 
01.11.2008
Published: 
30.04.2009
Short text (in English):
(downloads: 87)