ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Gulay A. P., Buh A. V. The study of multistability and external synchronization in nonautonomous system of two coupled van der pol oscillators with repulsive coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 94-103. DOI: 10.18500/0869-6632-2014-22-6-94-103

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 204)
Article type: 

The study of multistability and external synchronization in nonautonomous system of two coupled van der pol oscillators with repulsive coupling

Gulay Artem Petrovich, Saratov State University
Buh Andrej Vladimirovich, Saratov State University

In this paper we study the bifurcational mechanisms of synchronization and multistability formation in a system of two interacting van der Pol oscillators, one of which is under external harmonic forcing. We draw a two­parametric bifurcation diagram for phasereduced system and study its evolution in transition from symmetrical to asymmetrical repulsive interaction. Relying on the results of bifurcation analysis of non­reduced system we conclude that the synchronization scenarios found in the phase­reduced system correspond to the ones in the non­reduced system.

  1. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge: Cambridge University Press; 2003. 432 p.
  2. Anishchenko VS, Astakhov VV, Neiman AB, Vadivasova T, Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Berlin: Springer; 2007. 446 p. DOI: 10.1007/978-3-540-38168-6.
  3. Balanov AG, Janson NB, Postnov DE, Sosnovtseva OV. Synchronization: From Simple to Complex. Berlin: Springer; 2009. 426 p. DOI: 10.1007/978-3-540-72128-4.
  4. Izhikevich EM. Weakly connected quasi-periodic oscillators, FM interactions, and multiplexing in the brain. SIAM Journal on Applied Mathematics. 1999;59(6):2193-2223. DOI: 10.1137/S0036139997330623.
  5. Anishchenko V, Nikolaev S, Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus. Phys. Rev. E. 2007;76(4):046216. DOI: 10.1103/physreve.76.046216.
  6. Anishchenko V, Nikolaev S, Kurths J. Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus. Chaos. 2008;18(3):037123. DOI: 10.1063/1.2949929.
  7. Anishchenko V, Astakhov S, Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force. Europhysics Letters. 2009;86(3):30003. DOI: 10.1209/0295-5075/86/30003.
  8. Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics. 1983;69(1):32-47. DOI: 10.1143/PTP.69.32.
  9. Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
  10. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Synchronization of chaos. International Journal of Bifurcation and Chaos. 1992;2(3):633-644. DOI: 10.1142/S0218127492000756.
  11. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996;76(11):1804-1807. DOI: 10.1103/physrevlett.76.1804.
  12. Strogatz SH. Exploring complex networks. Nature. 2001;410(6825):268-276. DOI: 10.1038/35065725.
  13. Lu J, Zhong J, Tang Y, Huang T, Cao J, Kurths J. Synchronization in output-coupled temporal Boolean networks. Sci. Rep. 2014;4(1):6292. DOI: 10.1038/srep06292.
  14. Koseska A, Volkov E, Kurths J. Oscillation quenching mechanisms: Amplitude vs. oscillation death. Physics Reports. 2013;531(4):173-199. DOI: 10.1016/j.physrep.2013.06.001.
  15. Kuznetsov AP, Sataev IR, Turukina LV. Forced synchronization of two coupled Van der Pol self-oscillators. Russian Journal of Nonlinear Dynamics. 2011;7(3):411-425 (in Russian). DOI: 10.20537/nd1103001.
  16. Anishchenko VS, Astakhov SV, Vadivasova IE, Feoktistov AV. Numerical and experimental study of external synchronization of two-frequency oscillations. Russian Journal of Nonlinear Dynamics. 2009;5(2):237-252 (in Russian). DOI: 10.20537/nd0902006.
  17. Astakhov SV, Fujiwara N, Gulay AP, Tsukamoto N, Kurths J. Hopf bifurcation and multistability in a system of phase oscillators. Phys. Rev. E. 2013;88(3):032908. DOI: 10.1103/physreve.88.032908.
  18. Available from:˜bard/xpp/xpp.html.
Short text (in English):
(downloads: 92)