Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Безручко Б. П., Пономаренко В. И., Селезнев Е. П. Экспериментальные исследования хаотической динамики рядом с Теоретиком // Известия вузов. ПНД. 2021. Т. 29, вып. 1. С. 88-135. DOI: 10.18500/0869-6632-2021-29-1-88-135

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 289)
Язык публикации: 
русский
Тип статьи: 
Обзорная статья
УДК: 
517.9:534.1

Экспериментальные исследования хаотической динамики рядом с Теоретиком

Авторы: 
Безручко Борис Петрович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
Пономаренко Владимир Иванович, Саратовский филиал Института радиотехники и электроники имени В.А.Котельникова РАН (СФ ИРЭ)
Селезнев Евгений Петрович, Саратовский филиал Института радиотехники и электроники имени В.А.Котельникова РАН (СФ ИРЭ)
Аннотация: 

Целью данной работы является составление обзора по работам, в которых проводились экспериментальные исследования закономерностей хаотической динамики, выявленные в теоретически в работах С.П. Кузнецова. Методы. В основе используемых методов исследования в первую очередь лежит построение экспериментальных схем, которые наиболее близко соответствуют математическим моделям, предложенным и теоретически и численно исследованным С.П. Кузнецовым. В качестве таковых выступают системы радиотехнических осцилляторов с различными типами связи и воздействия, автогенераторы с различными типами обратной связи. Результаты. На примере лампы обратной волны исследован переход к хаосу в системе электронный пучок – обратная электромагнитная волна. На примере связанных нелинейных радиотехнических осцилляторов с синфазным возбуждением продемонстрированы открытые С.П. Кузнецовым универсальные закономерности и законы подобия связанных систем с удвоением периода. Представлены результаты экспериментального исследования радиофизических устройств, на примере которых выполнена верификация универсальных закономерностей критического поведения двух однонаправленно связанных систем с удвоениями периода. Представлены результаты совместных с С.П. Кузнецовым экспериментальных исследований, в которых впервые в мире представлены убедительные доводы существования перехода к хаосу через рождение странного нехаотического аттрактора. Представлена экспериментальная система с запаздывающей обратной связью для проверки теоретических закономерностей, проявляющихся на пороге перехода к хаосу. Экспериментально реализована разработанная С.П. Кузнецовым схема автогенератора гиперболического хаоса, который, по всей видимости, является первым в мире из известных примеров физической системы с грубым хаосом.

Список источников: 

  1. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Stochastic self-oscillations and instability in a backward-wave tube. Journal of Comm. Techn. and Electronics. 1983;28(6): 1136–1139 (in Russian).
  2. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19, no. 1. P. 25–52. DOI: 10.1007/BF01020332.
  3. Feigenbaum M. Universal Behavior in Nonlinear Systems. Los Alamos Science. 1980;1(1):4-27. DOI: 10.1016/0167-2789(83)90112-4. 
  4. Bezruchko BP, Gulyaev YuV, Kuznetsov SP, Seleznev EP. New type of critical behaviour of coupled systems at the transitions to chaos. DAN SSSR. 1986;287(3):619–622 (in Russian). 
  5. Linsay P.S. Period doubling and chaotic behaviour in a driven anharmonic oscillator // Phys. Rev. Lett. 1981. Vol. 47, no. 19. P. 1349–1352. DOI: 10.1103/PhysRevLett.47.1349.
  6. Testa J., Perez J., Jeff ries C. Evidence for universal chaotic behavior of a driven nonlinear oscillator // Phys. Rev. Lett. 1982. Vol. 48, № 11. P. 714–717. DOI: 10.1103/PhysRevLett.48.714.
  7. Astakhov VV, Bezruchko BP, Seleznev EP. Investigation of the dynamics of a nonlinear oscillatory circuit under harmonic action. Journal of Comm. Techn. and Electronics. 1987;32(12): 2558–2566
  8. Holmes P. A nonlinear oscillator with a strange attractor // Philos. Trans. of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1979. Vol. 292, no. 1394. P. 419–448. DOI: 10.1098/rsta.1979.0068.
  9. Rollins R.W., Hunt E.R. Exactly solvable model of a physical system exhibiting universal chaotic behavior // Phys. Rev. Lett. 1982. Vol. 49, no. 18. P.1295–1298. DOI: 10.1103/PhysRevLett.49.1295.
  10. Testa J., Perez J., Jeff ries C. Testa, Perez and Jeff ries respond // Phys. Rev. Lett. 1982. Vol. 49, no. 14. P. 1055. DOI: 10.1103/PhysRevLett.49.1055.
  11. Hunt E.R. Comment on a driven nonlinear oscillator // Phys. Rev. Lett. 1982. Vol. 49, no. 14. P. 1054. DOI: 10.1103/PhysRevLett.49.1054.
  12. Bezruchko BP, Kuleshov AV, Ponomarenko VI, Seleznev EP. Nonlinear oscillations in the resonator with varactor diode. Journal of Comm. Techn. and Electronics. 1991;36(8):1519–1524 (in Russian).
  13. Kurz Th., Lauterborn W. Bifurcation structure of the Toda oscillator // Phys. Rev. A. 1988. Vol. 37, no. 3. P. 1029–1031. DOI: 10.1103/physreva.37.1029.
  14. Hasler MJ. Electrical circuits with chaotic behavior. Proc. of the IEEE. 1987;75(8):1009–1021. DOI: 10.1109/PROC.1987.13846.
  15. Bezruchko BP, Seleznev EP. Complex dynamics of a driven oscillator with a piecewise-linear characteristic. Tech. Phys. Lett. 1994;20:800–801.
  16. Seleznev EP, Zakharevich AM. Structure of the control parameter space for a nonautonomous piecewise linear oscillator. Technical physics. 2006;51(4):522–524. DOI: 10.1134/S1063784206040220.
  17. Bezruchko BP, Zhalnin AYu, Prokhorov MD, Seleznev EP. Discrete nonlinear models of a periodically excited RL-diode circuit. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(2): 48–62 (in Russian).
  18. Bezruchko BP, Prokhorov MD, Seleznev EP. Model of a dissipative oscillator in the form of a one-dimensional mapping with three parameters. Tech. Phys. Lett. 1994;20(6):508–510
  19. Bezruchko B.P., Prokhorov M.D., Seleznev Ye.P. Multiparameter model of a dissipative nonlinear oscillator in the form of one-dimensional map // Chaos, Solitons, Fractals. 1995. Vol. 5, № 11. P. 2095–2107. DOI: 10.1016/0960-0779(95)00007-Q.
  20. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophysics and Quantum Electronics. 1985;28(8):681–695 (in Russian). DOI: 10.1007/BF01035195. 
  21. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophysics and Quantum Electronics. 1985;28(8):681–695 (in Russian). DOI: 10.1007/BF01035195. 
  22. Kuznetsov AP, Kuznetsov SP, Sataev IR. Co-dimensionality and typicality in the context of the problem of describing the transition to chaos through period doublings in dissipative dynamical systems. Regular and chaotic dynamics. 1997;2(3–4):90–105 (in Russian). DOI: 10.1070/RD1997v002n04ABEH000050
  23. . Kuznetsov SP, Pikovsky AS. Transition from symmetric to asymmetric regime of chaotic dynamics in a system of dissipatively coupled recurrent maps. Radiophysics and Quantum Electronics. 1989;32(1):49–54 (in Russian).
  24. Astakhov VV, Bezruchko BP, Kuznetsov SP, Seleznev EP. Onset of Quasiperiodic Motions in a System of Dissipatively Coupled Nonlinear Oscillators Driven by a Periodic External Force. Tech. Phys. Lett. 1988;14(1):37–41 (in Russian).
  25. Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev EP. Quasihomogeneous stochastic motions and their break-up in a system of coupled nonlinear oscillators. Radiophysics and Quantum Electronics. 1988;31(5):627–630 (in Russian). 
  26. Astakhov VV, Bezruchko BP, Gulyaev YV, Seleznev EP. Multistable states of dissipatively– coupled Feigenbaum systems. Tech. Phys. Lett. 1989;15(3):60–65 (in Russian). 
  27. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Tech. Phys. 1990;60(10):19–26 (in Russian).
  28. Bezruchko BP, Gulyaev YV, Pudovochkin OB, Seleznev EP. Multistability in oscillatory systems with period doubling and unidirectional coupling. Proceedings of the Academy of Sciences USSR. 1990;314(2):332–336 (in Russian).
  29. Bezruchko BP, Seleznev EP. Basins of attraction for chaotic attractors in coupled systems with period doubling. Tech. Phys. Lett. 1997;23(2):144–146. DOI: 10.1134/1.1261565.
  30. Bezruchko BP, Prokhorov MD, Seleznev EP. Oscillation modes, multistability and basins of attraction of attractors of symmetrically coupled systems with period doubling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(4):47–68 (in Russian).
  31. Stankevich NV, Duorak A, Astakhov V et al. Chaos and hyperchaos in coupled antiphase driven toda oscillators. Regular and Chaotic Dynamics. 2018;23(1):120–126. DOI: 10.1134/S1560354718010094.
  32. Landau LD. To the problem of turbulence. Proceedings of the Academy of Sciences USSR. 1944;44(8):339–342 (in Russian).
  33. Ruelle D, Takens F. On the nature of turbulence. Comm. Math. Phys. 1971;20:167–192. DOI: 10.1007/BF01646553.
  34. Ruelle D, Takens F. On the nature of turbulence. Strange attractors, Moscow, Mir; 1981. p. 117–151 (in Russian).
  35. Grebodgi C, Ott E, Pelican S, Yorke J. Strange attractor that are not chaotic. Physica D. 1984;13(1–2):261–268. DOI: 10.1016/0167-2789(84)90282-3.
  36. Bondeson A, Ott E, Antonsen Jr. TM. Quasiperiodically forced damped pendula and Schrodinger equations with quasiperiodic potentials: implications of their equivalence. Phys. Rev. Lett. 1985; 55(20):2103–2106. DOI: 10.1103/PhysRevLett.55.2103.
  37. Romeiras FJ, Bondeson A, Ott E, Antonsen Jr. TM, Grebogi C. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D. 1987;26(1–3):277–294. DOI: 10.1016/0167-2789(87)90229-6.
  38. Romeiras FJ, Ott E. Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. Phys. Rev. A. 1987;35(10):4404–4413. DOI: 10.1103/physreva.35.4404.
  39. Ding M, Grebogi C, Ott E. Evolution of attractors in quasiperiodically forced system. Phys. Rev. A. 1989;39(5):2593–2598. DOI: 10.1103/physreva.39.2593.
  40. Ditto WL et al. Experimental observation of a strange nonchaotic attractor. Phys. Rev. Lett. 1990;65(5):533. DOI: 10.1103/PhysRevLett.65.533.
  41. Ding M, Grebogi C, Ott E. Dimensions of strange nonchaotic attractors. Phys. Lett. A. 1989; 137(4–5):167–172. DOI: 10.1016/0375-9601(89)90204-1.
  42. Hunt BR, Ott E. Fractal properties of robust strange nonchaotic attractors. Phys. Rev. Lett. 2001;87(25):254101. DOI: 10.1103/PhysRevLett.87.254101.
  43. Kapitaniak T, Ponce E, and Wojewoda J. Route to chaos via strange non–chaotic attractors. J. Phys. A.: Math. Gen. 1990;23(8):L383. DOI: 10.1088/0305-4470/23/8/006.
  44. Pikovsky A and Feudel U. Characterizing strange nonchaotic attractors. CHAOS. 1995;5):253. DOI: 10.1063/1.166074.
  45. Feudel U, Kurths J and Pikovsky A. Strange nonchaotic attractor in a quasiperiodically forced circle map. Physica D. 1995;88(3–4):176–186. DOI: 10.1016/0167-2789(95)00205-I.
  46. Zhou T, Moss F, Bulsara A. Observation of a strange nonchaotic attractor in a multistable potential. Phys. Rev. A. 1992;45(8):5394–5400. DOI: 10.1103/physreva.45.5394.
  47. Kuznetsov S, Pikovsky A, Feudel U. Birth of a strange nonchaotic attractor: A Renormalization group analysis. Phys. Rev. E. 1995;51(3):R1629–R1632. DOI: 10.1103/PhysRevE.51.R1629.
  48. Kuznetsov S, Feudel U, Pikovsky A. Renormalization group for scaling at the torus-doubling terminal point. Phys. Rev. E. 1998;57(2):1585–1590. DOI: 10.1103/PhysRevE.57.1585.
  49. Witt A, Feudel U, Pikovsky A. Birth of strange nonchaotic attractors due to interior crisis. Physica D. 1997;109(1–2):180–190. DOI: 10.1016/S0167-2789(97)00168-1.
  50. Osinga HM, Feudel U. Boundary crisis in quasiperiodically forced systems. Physica D. 2000; 141(1–2):54–64. DOI: 10.1016/S0167-2789(00)00031-2.
  51. Kaneko K. Doubling of torus. Prog. Theor. Phys. 1983;69(6):1806–1810. DOI: 10.1143/PTP.69.1806.
  52. Kuznetsov SP. Effect of a periodic external perturbation on a system which exhibits an orderchaos transition through period-doubling-bifurcations metal-insulator-semiconductor. JETP Letters. 1984;39(3):113–116. (in Russian).
  53. Kuznetsov SP, Pikovsky AS, Feudel U. Strange non-chaotic attractor. World Scientific Publishing; 2006.
  54. Bezruchko BP, Kuznetsov SP, Pikovsky AS, Feudel U, Seleznev EP. On the dynamics of nonlinear systems under an external quasiperiodic action near the end point of the torus doubling bifurcation line. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):3–20 (in Russian).
  55. Bezruchko BP, Kuznetsov SP, Seleznev YeP. Experimental observation of dynamics near the torus–doubling terminal critical point. Phys. Rev. E. 2000;62(6):7828–7830. DOI: 10.1103/PhysRevE.62.7828.
  56. Seleznev EP, Zakharevich AM. Dynamics of a nonlinear oscillator under quasi-periodic drive action. Tech. Phys. Lett. 2005;31(9):725–727. DOI: 10.1134/1.2061728.
  57. Kislov VYa, Zalogin NN, Myasin EA. Investigation of stochastic self-oscillatory processes in autogenerators with delay. Journal of Comm. Tech. and Electronics. 1979;24(6):1118–1130 (in Russian).
  58. Kats VA, Trubetskov DI. Onset of chaos during the disruption of quasiperiodic regimes and transition through intermittence in a distributed generator with retardation. JETP Letters. 1984;39(3):137.
  59. Anischenko VS. Complex oscillations in simple systems. Vol. 87. Moscow, Nauka; 1990. 312 p. (in Russian).
  60. Dmitriev AS, Panas AI. Dynamic chaos: new carriers of information for communication systems. Moscow, Fizmatlit; 2002. 252 p. (in Russian).
  61. Vаlleе R, Delisle C. Periodicity windows in a dynamical system with a delayed feedback. Phys. ´ Rev. A. 1986;34(1):309–318. DOI: 10.1103/PhysRevA.34.309.
  62. Ikedа К, Коndо К, Akimоtо О. Successive higher-harmonic bifurcations in systems with delayed feedback. Phys. Rev. Lett. 1982;49(20):1467–1470. DOI: 10.1103/PhysRevLett.49.1467.
  63. Le Vеrre М, Ressayre E, Tallet A, Gibbs HM. High-dimension chaotic attractors of a nonlinear ring cavity. Phys. Rev. Lett. 1986;56(4):274–277. DOI: 10.1103/PhysRevLett.56.274.
  64. Kuznetsov SP, Pikovsky AS. Universality of period doubling bifurcation in one-dimensional dissipative medium. Radiophysics and Quantum Electronics. 1985;28(3):205–215. DOI: 10.1007/BF01035479.
  65. Bezruchko BP, Kuznetsov SP, Kamenskiy VYu, Ponomarenko VI. Experimental confirmation of the laws of universality and similarity for the model of a generator with delayed feedback. Tech. Phys. Lett. 1988;14(11):1014–1019 (in Russian).
  66. Sinai YaG. Strange Attractors / Ed. Ya.G. Sinai and L.P. Shilnikov. Moscow, Mir, 1981. 253 p. (in Russian).
  67. Modern problems of mathematics. Fundamental directions. Results of Science and Technology, v.2. Ed. RV Gamkrelidze. All-Russian Institute for Scientific and Technical Information of the Academy of Sciences USSR, Moscow; 1985. (in Russian).
  68. Eckmann J-P and Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985;57(3):617–656. DOI: 10.1103/RevModPhys.57.617.
  69. Katok AB, Hasselblat B. Introduction to the modern theory of dynamical systems. Cambridge University Press, 1st edition, 1996. 824 p.
  70. Afraimovich V, Hsu S-B. Lectures on chaotic dynamical systems, AMS/IP Studies in Advanced Mathematics, 28, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2003, 353 pp.
  71. Devaney RL. An Introduction to Chaotic Dynamical Systems. New York: Addison-Wesley; 1989. 360 p.
  72. Ott E. Chaos in Dynamical Systems. Cambridge University Press; 1993.
  73. Kuznetsov SP. Dynamical chaos. Moscow; Fizmatlit; 2001. 296 p. (in Russian).
  74. Newhouse S, Ruelle D, Takens F. Occurrence of strange Axiom-A attractors near quasi periodic flows on. Comm. Math. Phys. 1978(64):35–40. DOI: 10.1007/BF01940759.
  75. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman AB, Strelkova GI, Shimansky-Geier L. Nonlinear effects in chaotic and stochastic systems. Moscow, Izhevsk, Inst. of Computer science, 2003 (in Russian).
  76. Afraimovich VS, Bykov VV, Shilnikov LP. On the origin and structure of the Lorentz attractor. Proceedings of the Academy of Sciences USSR. 1977;234):336–339 (in Russian).
  77. Mischaikow K, Mrozek M, Szymczak A. Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values. Journal of Differential Equations. 2001;169(1):17–56. DOI: 10.1006/jdeq.2000.3894.
  78. Hunt TJ, MacKay RS. Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Nonlinearity. 2003;16(4):1499. DOI: 10.1088/0951-7715/16/4/318.
  79. Hunt T.J. Low Dimensional Dynamics Bifurcations of Cantori and Realisations of Uniform Hyperbolicity. PhD Thesis, University of Cambridge, 2000.
  80. Belykh V, Belykh I, Mosekilde E. Hyperbolic Plykin attractor can exist in neuron models. International Journal of Bifurcation and Chaos. 2005;15(11):3567–3578. DOI: 10.1142/S0218127405014222.
  81. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2): 355–364. DOI: 10.1134/S1063776106020166.
  82. Kuznetsov SP, Ponomarenko VI, Seleznev EP. An autonomous system is a generator of hyperbolic chaos: schematic modeling and experiment. Izvestiya VUZ. Applied nonlinear dynamics. 2013; 21(5):17–30 (in Russian). DOI: 10.18500/0869-6632-2013-21-5-17-30.
  83. Isaeva OB, Kuznetsov SP, Savin DV, Sataev IR, Seleznev YP. Hyperbolic chaos and other phenomena of complex dynamics depending on parameters in a nonautonomous system of two alternately activated oscillators. Int. J. Bif. Chaos. 2015;25(12):1530033. DOI: 10.1142/S0218127415300335.
  84. Kuznetsov SP, Ponomarenko VI. Realization of a strange attractor of the Smale–Williams type in a radiotechnical delay-feedback oscillator. Tech. Phys. Lett. 2008;34(9):771–773. DOI: 10.1134/S1063785008090162.
  85. Kuznetsov SP, Pikovsky A. Autonomous coupled oscillators with hyperbolic strange attractors. Physica D. 2007;232(2):87–102. DOI: 10.1016/j.physd.2007.05.008.
  86. Rodriguez-Vazquez A, Huertas HL, Rueda A, Perez-Verdue B, Chzhua LO. Chaos in circuits on switched capacitors. Proceedings of the IEEE. 1987;75(8):124-140 (in Russian).
  87. Isaeva OB, Kuznetsov SP, Ponomarenko VI. Mandelbrot set in coupled logistic maps and in electronic experiment. Phys. Rev. E. 2001;64):055201. DOI: 10.1103/PhysRevE.64.055201.
  88. Isaeva OB. Complex analytical dynamics as applied to radiophysical systems. Dissertation for the degree of candidate of physical and mathematical sciences. Saratov, 2003, 161 p. (in Russian).
Поступила в редакцию: 
16.11.2020
Принята к публикации: 
27.11.2020
Опубликована: 
01.02.2021