ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kryukov A. K., Osipov G. V., Polovinkin A. V. Variety of synchronous regimes in ensembles of nonidentical oscillators: two coupled elements. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 16-28. DOI: 10.18500/0869-6632-2009-17-2-16-28

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 129)
Language: 
Russian
Article type: 
Article
UDC: 
621.391.01

Variety of synchronous regimes in ensembles of nonidentical oscillators: two coupled elements

Autors: 
Kryukov Aleksej Konstantinovich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Polovinkin Andrej Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

We study synchronization of two coupled nonidentical Bonhoeffer–van der Pol oscillators. Coexistence of two different synchronous regimes is proved. Mechanisms of synchronous regimes origination and destruction are investigated. Fluctuations influence on syncronous regimes is considered. It is found that noise can cause: i) synchronization destruction and beating originations; ii) fluctuations-caused bistability destruction; iii) fluctuations-caused intermittency of synchronous regimes without synchronization destruction.

Reference: 
  1. Maurer J, Libchaber A. J.Phys (France) Lett. 1982;41:515–518.
  2. Brun E, Derighette B, Meier D, Holzner R, Raveni M. Observation of order and chaos in a nuclear spin-flip laser. J.Opt.Soc.Am. B. 1985;2(1):156–167.
  3. Dangoisse D, Glorieux P, Hennequin D. Chaos in a CO2 laser with modulated parameters: Experiments and numerical simulations. Phys Rev A Gen Phys. 1987;36(10):4775-4791. DOI: 10.1103/physreva.36.4775. PMID: 9898737.
  4. Thompson JMT, Stewart HB. Nonlinear Dynamics and Chaos. Wiley, Chichester, 1986. 376 p.
  5. Foss J, Longtin A, Mensour B, Milton J. Multistability and delayed recurrent loops. Phys Rev Lett. 1996;76(4):708-711. DOI: 10.1103/PhysRevLett.76.708.
  6. Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F. Visual Perception of Stochastic Resonance. Phys. Rev. Lett. 1997;78:1186–1189. DOI: 10.1103/PHYSREVLETT.78.1186.
  7. Bonhoeffer K.F. Modelle der Nervenerregung. Naturwissenschaften. 1953;40:301–311.
  8. Torre V. A theory of synchronization of heart pace-maker cells. J Theor Biol. 1976;61(1):55-71. DOI: 10.1016/0022-5193(76)90104-1.
  9. Matrosov VV. Dynamics of nonlinear systems. Software complex for the study of nonlinear dynamic systems with continuous time. Nizhny Novgorod: UNN Press; 2002. 54 p. (In Russian).
  10. Mantegna RN, Spagnolo B. Noise Enhanced Stability in an Unstable System. Phys. Rev. Lett. 1996;395(4):563–566.
  11. Malakhov AN, Agudov NV. Decay of unstable equilibrium and nonequilibrium states with inverse probability current taken into account. Phys. Rev. E. 1999;60:6333–6343.
Received: 
15.08.2008
Accepted: 
01.12.2008
Published: 
30.06.2009
Short text (in English):
(downloads: 76)