Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


устойчивость

Охота на химер в полносвязных сетях нелинейных осцилляторов

Целью работы является изучение динамических свойств решений специальных систем обыкновенных дифференциальных уравнений, называемых полносвязными сетями нелинейных осцилляторов. Методы. Предлагается новый подход к отысканию в этих системах периодических режимов химерного типа, суть которого состоит в следующем. Сначала в случае симметричной сети решается более простой вопрос о существовании и устойчивости квазихимерных решений — периодических режимов двухкластерной синхронизации.

Математическое моделирование конкуренции двух идеологий с внутренними конфликтами

При изучении социальных процессов большой интерес представляет прогнозирование поведения общества или отдельных его составляющих. В настоящее время для этого активно разрабатываются методы математического моделирования и соответствующие математические модели. Создание таких моделей сопряжено с определенными трудностями – большая размерность модели, плохая формализуемость рассматриваемых объектов, многокритериальность, слабая структурированность рассматриваемой предметной области и т.п.

Охота на химер в полносвязных сетях нелинейных осцилляторов

\textit{Целью} работы является изучение динамических свойств решений специальных систем обыкновенных дифференциальных уравнений, называемых полносвязными сетями нелинейных осцилляторов.

Периодические режимы группового доминирования в полносвязных нейронных сетях

Рассматриваются нелинейные системы дифференциальных уравнений с запаздыванием, являющиеся математическими моделями полносвязных сетей импульсных нейронов. Целью работы является изучение динамических свойств одного специального класса решений этих систем. Методами большого параметра исследуются вопросы о существовании и устойчивости в изучаемых моделях специальных периодических движений – так называемых режимов группового доминирования или k-доминирования, где k ∈ N. Результаты.

Периодические режимы группового доминирования в полносвязных нейронных сетях

Рассматриваются нелинейные системы дифференциально-разностных уравнений с запаздыванием, являющиеся математическими моделями полносвязных сетей импульсных нейронов.
Методами большого параметра исследуются вопросы о существовании и устойчивости в этих системах специальных периодических движений -- так называемых режимов группового доминирования или $k$-доминирования, где $k\in\mathbb{N}.$

Уравнения с нелинейностями дислокаций и Ферми–Пасты–Улама

Тема и цель исследования. Исследуется класс уравнений Ферми–Пасты–Улама и уравнений, описывающих дислокации. Эти уравнения, являясь ярким представителем интегрируемых уравнений, представляют интерес как в теоретических построениях, так и в прикладных исследованиях. Исследуемые модели. В настоящей работе рассматривается модель, объединяющая эти два уравнения, для нее исследуются локальные динамические свойства решений.

УРАВНЕНИЯ С НЕЛИНЕЙНОСТЯМИ ДИСЛОКАЦИЙ И ФЕРМИ-ПАСТА-УЛАМА

Тема и цель исследования. Исследуется класс уравнений Ферми-Паста-Улама и уравнений, описывающих дислокации. Этим уравнениям посвящено большое число работ. Эти уравнения представляют определенный интерес и в прикладном смысле, и в теоретических исследованиях, являсь ярким представителем интегрируемых уравнений. Исследуемые модели. В предыдущей работе была рассмотрена модель, объединяющая эти два уравнения и изучен ряд вопросов, касающихся интегрируемости по Пенлеве её решений.

Разрушение когерентного режима в системе двух автогенераторов при сильных резонансных взаимных связях

Проверена гипотеза о разрушении когерентного режима в системе двух взаимосвязанных СВЧ автогенераторов, каждый из которых в автономном режиме генерирует стабильные одночастотные колебания. Экспериментально показано, что при сильных резонансных связях синхронные колебания неустойчивы, в результате чего система переходит в режим динамического хаоса.

Нелинейные эффекты в автогенераторной системе с частотно-фазовым управлением

Исследованы режимы динамического поведения и нелинейные явления в моделях системы с частотно-фазовым управлением в случае периодической нелинейной характеристики частотного дискриминатора. Определены условия синхронизации, выяснено, что в системе может реализоваться множество разнообразных (как периодических, так и хаотических) несинхронных режимов. Рассмотрены особенности динамики системы, обусловленные параметрами, характеризующими степень влияния цепи частотного управления. 

Режимы динамики генетической структуры и численности в эволюционной модели двухвозрастной популяции

В работе исследуются режимы динамики генетической структуры и численности структурированной популяции. На генетическом уровне определяются репродуктивный потенциал популяции и выживаемость половозрелых особей на последующих годах жизни. Показано, что эволюционное увеличение средней приспособленности сопровождается возникновением в модели сложной динамики численности и генетического состава популяции. Дальнейший рост приспособленности способен стабилизировать генетический состав популяции и флуктуации разной степени сложности будет испытывать уже только ее численность.

Страницы