Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


аттрактор

Математическая теория динамического хаоса и её приложения: Обзор Часть 2. Спиральный хаос трехмерных потоков

Основной целью настоящей работы является изложение теории спирального хаоса трехмерных потоков, то есть теории странных аттракторов, связанных с существованием у таких систем гомоклинических петель состояний равновесия типа седло-фокус, на основе объединения двух ее фундаментальных положений, теории Шильникова и универсальных сценариев возникновения спирального хаоса, то есть тех элементов теории, которые остаются справедливыми для любых моделей, независимо от их происхождения.

Автогенератор грубого гиперболического хаоса

Тема и цель исследования. Цель состоит в разработке автогенератора грубого хаоса, у которого на аттракторе реализуется динамика, близкая к потоку Аносова на многообразии отрицательной кривизны, в построении и анализе математической модели, а также проведении схемотехнического моделирования динамики с помощью программного продукта Multisim. Исследуемые модели. Сформулирована математическая модель, описываемая системой обыкновенных дифференциальных уравнений девятого порядка с алгебраической нелинейностью, и предложена схемотехническая реализация генератора хаоса.

МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ДИНАМИЧЕСКОГО ХАОСА И ЕЁ ПРИЛОЖЕНИЯ: ОБЗОР. ЧАСТЬ 2. СПИРАЛЬНЫЙ ХАОС ТРЕХМЕРНЫХ ПОТОКОВ

Эта работа посвящена актуальным вопросам теории спирального хаоса трехмерных потоков, т.е. теории странных аттракторов, связанных с существованием у таких систем гомоклинических петель состояний равновесия типа седло-фокус. Математические основы этой теории были заложены в 60-х годах в знаменитых работах Л.П. Шильникова, и на эту тему к настоящему времени накоплено очень много важных и интересных результатов.

Система трех неавтономных осцилляторов с гиперболическим хаосом

В работе исследуется система трех связанных неавтономных автоколебательных элементов, в которой поведение фаз осцилляторов за период изменения коэффициентов в уравнениях имеет сходство с отображением Аносова, демонстрирующим хаотическую динамику. Результаты численного исследования позволяют заключить, что аттрактор отображения Пуанкаре можно рассматривать, по крайней мере в грубом приближении, как вложенный в шестимерное фазовое пространство двумерный тор, динамика на котором представляет собой гиперболический хаос, характерный для систем Аносова.

О сценариях разрушения гиперболического хаоса в модельных отображениях на торе с диссипативным возмущением

В работе исследуется диссипативная модификация отображения «кот Арнольда», в которой при малых значениях амплитуды введенного возмущения реализуется гиперболический хаос, и в определенном диапазоне имеет место гиперболический хаотический аттрактор с поперечной канторовой структурой, разрушающийся при дальнейшем увеличении амплитуды возмущения.

Параметрические генераторы с хаотической амплитудной динамикой, отвечающей аттракторам типа смейла–вильямса

Рассмотрен новый подход к построению параметрических генераторов хаоса с гиперболическими аттракторами на основе двух попеременно возбуждающихся подсистем, где каждая состоит из трех осцилляторов, один из которых играет роль накачки. В отличие от ранее предложенных схем, в качестве угловой переменной, претерпевающей кратное увеличение за характерный период, выступает не фаза колебаний, а величина, характеризующая распределение амплитуд двух колебательных элементов при параметрическом возбуждении от общего источника накачки.

Режимы динамики генетической структуры и численности в эволюционной модели двухвозрастной популяции

В работе исследуются режимы динамики генетической структуры и численности структурированной популяции. На генетическом уровне определяются репродуктивный потенциал популяции и выживаемость половозрелых особей на последующих годах жизни. Показано, что эволюционное увеличение средней приспособленности сопровождается возникновением в модели сложной динамики численности и генетического состава популяции. Дальнейший рост приспособленности способен стабилизировать генетический состав популяции и флуктуации разной степени сложности будет испытывать уже только ее численность.

Грубый хаос в автономной системе с запаздыванием

Рассматривается автономная система, построенная как модификации логистического дифференциального уравнения с запаздыванием и генерирующая последовательные цуги колебаний с фазой, трансформирующейся в соответствии с хаотическими отображениями. Система содержит две петли обратной связи, характеризующиеся двумя, вообще говоря, разными временами задержки. В случае их равенства хаотическая динамика определяется аттрактором Смейла–Вильямса, который соответствует двукратно растягивающему отображению окружности для фазы несущего  сигнала цугов колебаний.

Автономный генератор квазипериодических колебаний

Вводится в рассмотрение простая трехмерная автономная система, в которой реализуются квазипериодические автоколебания, соответствующие аттрактору в виде двумерного тора. Представлены компьютерные иллюстрации квазипериодической динамики: фазовые портреты, спектры Фурье, графики показателей Ляпунова. Продемонстрировано существование языков Арнольда на плоскости параметров и переход от квазипериодической динамики к хаосу через разрушение инвариантной кривой в сечении Пуанкаре.  

Четырехмерная система с тором-аттрактором, возникающим при седло-узловой бифуркации предельных циклов, в контексте семейства катастроф голубого неба

Предложена новая четырехмерная модель с квазипериодической динамикой. Аттрактор в виде тора возникает в результате седло-узловой бифуркации, которая может рассматриваться как представитель семейства, охватывающего различные типы катастроф голубого неба. В той же системе в другой области параметров тор рождается в результате бифуркации Неймарка–Сакера. Скачать полную версию    

Страницы