ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Chaotic dynamics of pendulum ring chain with vibrating suspension

Topic and aim. The aim of the work is to introduce into consideration a mechanical system that is a chain of oscillators capable of demonstrating hyperbolic chaos due to the presence of attractor in the form of the Smale–Williams solenoid. Investigated model. We study the pendulum ring chain with parametric excitation due to the vertical oscillating motion of the suspension alternately at two different frequencies, so that the standing wave patterns appear in the chain with a spatial scale that differs by three times.

Автогенератор грубого гиперболического хаоса

Тема и цель исследования. Цель состоит в разработке автогенератора грубого хаоса, у которого на аттракторе реализуется динамика, близкая к потоку Аносова на многообразии отрицательной кривизны, в построении и анализе математической модели, а также проведении схемотехнического моделирования динамики с помощью программного продукта Multisim. Исследуемые модели. Сформулирована математическая модель, описываемая системой обыкновенных дифференциальных уравнений девятого порядка с алгебраической нелинейностью, и предложена схемотехническая реализация генератора хаоса.

Хаотическая динамика кольцевой цепочки маятников с вибрирующим подвесом

Показана возможность реализации хаоса, обусловленного присутствием грубого гиперболического аттрактора, в кольцевой цепочке связанных маятников с диссипацией, когда частота вертикальных колебаний подвеса периодически переключается так, что обеспечивается попеременное параметрическое возбуждение одной или другой колебательной моды. Возникновение аттрактора в виде соленоида Смейла – Вильямса обусловлено тем, что для образующихся на кольцевой цепочке стоячих волн пространственная фаза за период модуляции накачки трансформируется в соответствии с растягивающим отображением окружности.

Chaotic microwave pulse train generation in self-oscillatory system based on a ferromagnetic film

Experimental investigations results of the ring self-oscillatory system based on a ferromagnetic ?lm at three-wave interactions were considered. The model describing this system was constructed. The typical regimes of a generation, including generation of the chaotic microwave train were calculated with the help of the constructed model. The numerical simulations and experimental results had a good agreement.

Parametric generators with chaotic amplitude dynamics corresponding to attractors of smale–williams type

A new approach is considered to design of parametric generators of chaos with hyperbolic attractors on the basis of two alternately excited subsystems, each consisting of three oscillators, one of which plays the role of the pump source. In contrast to previously proposed schemes, the angular variable undergoing a multiple increase over each characteristic period is a quantity characterizing the amplitude ratio of two oscillators, rather then the phase of successive oscillation trains.

Numerical simulation of nonlinear dynamics in multiple cavity klystron oscillator with delayed feedback by the "partikle-in- cell» method

The 1.5 D code program of numerical simulation of nonlinear nonstationary processes in the klystron-type devices based on the nonstationary L.A. Vainshtein’s theory of cavity excitation and the «particle-in-cell» method for modeling of the electron beam dynamics is developed. The results of numerical simulation of the basic oscillation modes of the fourcavity klystron oscillator with the external delayed feedback are presented.

Chaos in radio device with square­law phase modulator and interference amplification of quasi­harmonic signal: a model and simulation

The attempt is undertaken to define a class of oscillations or waves sources, the operation principle of which is based on interference amplification of feedback signal by an input signal. The precedent here is the optical Ikeda’s system. The radio­electronic analog of a nonlinear ring interferometer and it modification are offered, the block diagrams and mathematical models are constructed. The computer simulation is performed. An intermittency, chaos, regular, static modes are detected.

Analysis of stochastic work of the composite voltage stabilizer consisting of two buck converters connected as master–slave by fractal measures of deterministic chaos.

Stochastic operation of the parallel–connected buck convertors is considered. For qualitative analysis of the system the bifurcation diagrams are plotted. Quantitative analysis of chaotic regimes was realized by computing of main and special fractal dimensions.

Experiments with a source of chaos – a radio­electronic device with square­law phase modulator and interference amplification of quasi­harmonic signal

A modified radio­electronic analog of the nonlinear ring cavity is realized in laboratory. The device represents a special class of oscillations or waves sources. An operation principle of the sources is based on interference amplification of feedback signal by an input signal. A laboratory experiments are performed, the likeness of their results and simulation data is shown. An intermittency, chaos, regular, static modes are detected. A thesis on controlled nonlinearity of dynamical systems is suggested.

Dynamic modes of two­age population model

In this paper we research a mathematical model of dynamics for the population number. We considered the population of the two­age classes by the beginning of the next season: the younger, one including not reproductive individuals, and the senior class, consisting of the individuals participating in reproduction. The model parameters (birth rate and survival rates) represent the exponential functions of the both age groups numbers. According to this supposition the density­dependent factors restrict the development of population.